Interpretable ML

Local Model-Agnostic Method SHAP

Date: 26 Nov 2021

Agenda

- Interpretability
- Methods for model interpretation
- Game Theory
- Shapley values
- SHAP

Interpretability

- If a machine learning model performs well

Classification
 Accuracy

- Why do we not just trust the model and
- Ignore why it made a certain decision?

Interpretability

Why its important

- The need for interpretability arises from an incompleteness in problem formalization.

Interpretability

Why its important

- The need for interpretability arises from an incompleteness in problem formalization.
- For certain problems or tasks it is not enough to get the prediction (what)
- The model must also explain how it came to the prediction (why)
- because a correct prediction only partially solves your original problem

Human Curiosity

Human Curiosity

Human Curiosity

- Closely related to learning is the human desire to find meaning in the world.
- We want to harmonize contradictions or inconsistencies between elements of our knowledge structures.

Explanations

- Explanations are used to manage social interactions.

Explanations

- Explanations are used to manage social interactions.
- By creating a shared meaning of something, the explainer influences the recipient of the explanation
- Actions
- Emotions
- Beliefs

Explanations

- Explanations are used to manage social interactions.
- By creating a shared meaning of something, the explainer influences the recipient of the explanation
- actions
- emotions
- beliefs
- Machine learning models can only be debugged and audited when they can be interpreted.

Interpretability

Which ML techniques to use?

Interpretability
 Which ML techniques to use?

- Use only interpretable models

Interpretability
 Which ML techniques to use?

- Use only interpretable models
- predictive performance is lost compared to other machine learning models
- you limit yourself to one type of model

Linear Regression

Logistic Regression

$$
\hat{y}^{(i)}=\beta_{0}+\beta_{1} x_{1}^{(i)}+\ldots+\beta_{p} x_{p}^{(i)}
$$

$$
P\left(y^{(i)}=1\right)=\frac{1}{1+\exp \left(-\left(\beta_{0}+\beta_{1} x_{1}^{(i)}+\ldots+\beta_{p} x_{p}^{(i)}\right)\right)}
$$

$$
\ln \left(\frac{P(y=1)}{1-P(y=1)}\right)=\log \left(\frac{P(y=1)}{P(y=0)}\right)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}
$$

Naive Bayes

$$
P\left(C_{k} \mid x\right)=\frac{1}{Z} P\left(C_{k}\right) \prod_{i=1}^{n} P\left(x_{i} \mid C_{k}\right)
$$

Class Conditional Independence

Decision Tree

Decision Tree

Interpretability

Which ML techniques to use?

- Use only interpretable models
- predictive performance is lost compared to other machine learning models
- you limit yourself to one type of model

ML model	Simple	Complex
Accurate	X	\checkmark
Interpretable	\checkmark	X

Interpretability
 Which ML techniques to use?

- Use only interpretable models
- predictive performance is lost compared to other machine learning models
- you limit yourself to one type of model
- The other alternative is to use model-specific interpretation methods
- It also binds you to one model type
- It will be difficult to switch to something else

Methods

Example-based explanation method

- Select particular instances of the dataset
- to explain the behaviour of machine learning models
- to explain the underlying data distribution

Methods

Example-based explanation method

- Select particular instances of the dataset
- to explain the behaviour of machine learning models
- to explain the underlying data distribution

Methods

Example-based explanation method

- It help humans construct mental models
- Along with the data the ML model has been trained on
- It especially helps to understand complex data distributions

Methods

Example-based explanation method

- It help humans construct mental models
- Along with the data the ML model has been trained on
- It especially helps to understand complex data distributions
- But what do I mean by example-based explanations?

```
o A physician sees a patient with an unusual cough and a mild fever
o The patient's symptoms remind her of another patient she had years ago
    with similar symptoms
o She suspects that her current patient could have the same disease and she
    takes a blood sample to test for some specific disease
```


Methods

Example-based explanation method

- It help humans construct mental models
- Along with the data the ML model has been trained on
- It especially helps to understand complex data distributions
- But what do I mean by example-based explanations?

```
o A physician sees a patient with an unusual cough and a mild fever
o The patient's symptoms remind her of another patient she had years ago
    with similar symptoms
o She suspects that her current patient could have the same disease and she
    takes a blood sample to test for some specific disease
```


Methods

Model-Agnostic Methods

Methods

Model-Agnostic Methods

Separating the explanations
 from
 the machine learning model

Model-agnostic

Advantage

- Flexibility

- ML developers are free to use any ML model they like when the interpretation methods can be applied to any model
- Anything can be build on an interpretation of a machine learning model
- a graphic
- user interface
- becomes independent of the underlying machine learning model

Flexibility

Desirable aspects of a model-agnostic explanation system

\square
\square

Representation flexibility

Model Flexibility

Desirable aspects of a model-agnostic explanation system

Explanation flexibility

Representation flexibility

Explanation Flexibility

Desirable aspects of a model-agnostic explanation system

Model flexibility

Not limited to certain form of explanations ex Linear equation, graph, UI

Representation Flexibility

Desirable aspects of a model-agnostic explanation system

Model flexibility

Explanation flexibility

Different feature representation possible as the model being explained ex not W2V but words

Models

Black Boxes

Models

Black Boxes

Compare

Which methods are more useful?

Compare

Which methods are more useful?

- The example-based methods explain a model by selecting instances of the dataset and not by creating summaries of features.

Compare

Which methods are more useful?

- The example-based methods explain a model by selecting instances of the dataset and not by creating summaries of features.
- Example-based explanations only make sense if we can represent an instance of the data in a humanly understandable way.
- Ex: This works well for images, because we can view them directly.

Compare

Which methods are more useful?

- The example-based methods explain a model by selecting instances of the dataset and not by creating summaries of features.
- Example-based explanations only make sense if we can represent an instance of the data in a humanly understandable way.
- Ex: This works well for images, because we can view them directly.
- In general, example-based methods work well if
- the feature values of an instance carry more context
- (data has a structure as images or texts)

Local Methods

Explain individual predictions

- Local surrogate models (LIME) explains a prediction by replacing the complex model with a locally interpretable surrogate model.
- Scoped rules (anchors) are rules that describe which feature values anchor a prediction
- Counterfactual explanations explain a prediction by examining which features would need to be changed to achieve a desired prediction.
- Shapley values is an attribution method that fairly assigns the prediction to individual features.
- SHAP is another computation method for Shapley values.

Method

Local Model-Agnostic Method

Shapley Values
 and
 SHAP

Zero-Sum game

Mathematical representation of a situation

- An advantage that is won by one of two sides is lost by the other.
- If the total gains of the participants are added up, and the total losses are subtracted, they will sum to zero.

Zero-Sum game

Mathematical representation of a situation

- An advantage that is won by one of two sides is lost by the other.
- If the total gains of the participants are added up, and the total losses are subtracted, they will sum to zero.
- For example
- Cutting a cake, where taking a more significant piece reduces the amount of cake available for others as much as it increases the amount available for that taker, is a zero-sum game if all participants value each unit of cake equally.
- Other examples of zero-sum games in daily life include games like poker, chess, and bridge where one person gains and another person loses, which results in a zero-net benefit for every player.

Game Theory

- Cooperative Game
- is a game with competition between groups of players ("coalitions") due to the possibility of external enforcement of cooperative behaviour
- e.g. through contract law

Prisoner's dilemma

The paradox of the prisoner's dilemma is this:
Both robbers can minimise the total jail time that the two of them will do only if they both co-operate and stay silent

Prisoner's dilemma

- The prisoner's dilemma presents a situation where two parties, separated and unable to communicate, must each choose between co-operating with the other or not.
- If we have a coalition C that collaborates to produce a value V
- How much did each individual member contribute to the final value?

Answering it is tricky when there are interacting effects

V

Certain permutations cause Contributors to pay more than sum of their parts

0

V

- Alice, Bob and Celine share a meal:
- Alice, Bob and Celine share a meal:

$$
v(c)= \begin{cases}80, & \text { if } c=\{A\} \\ 56, & \text { if } c=\{B\} \\ 70, & \text { if } c=\{C\} \\ 80, & \text { if } c=\{A, B\} \\ 85, & \text { if } c=\{A, C\} \\ 72, & \text { if } c=\{B, C\} \\ 90, & \text { if } c=\{A, B, C\}\end{cases}
$$

- Shapley value
- To find fair value for solution, we should take Shapley values into account and should calculate it for each member in the coalition

$$
\phi_{i}(G)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} \Delta_{\pi}^{G}(i)
$$

- Alice, Bob and Celine share a meal:

$$
v(c)= \begin{cases}80, & \text { if } c=\{A\} \\ 56, & \text { if } c=\{B\} \\ 70, & \text { if } c=\{C\} \\ 80, & \text { if } c=\{A, B\} \\ 85, & \text { if } c=\{A, C\} \\ 72, & \text { if } c=\{B, C\} \\ 90, & \text { if } c=\{A, B, C\}\end{cases}
$$

π	δ_{π}^{G}
(A, B, C)	$(80,0,10)$
(A, C, B)	$(80,5,5)$
(B, A, C)	$(24,56,10)$
(B, C, A)	$(18,56,16)$
(C, A, B)	$(15,5,70)$
(C, B, A)	$(18,2,70)$
ϕ	$(39.2,20.7,30.2)$

©

C_{124}

$\square \mid$

$$
\begin{aligned}
& =\Phi 1 \\
& =\Phi 2 \\
& =\Phi 3 \\
& =\Phi 4
\end{aligned}
$$

Shapley value

Average marginal contribution of a feature value across all possible coalitions

Shapley value

- The Shapley value is one way to distribute the total gains to the players
- assuming that they all collaborate
- It is a "fair" distribution

Fair distribution

2 people join to work together

$$
\mathrm{f}(\mathrm{p} 1)=50 \mathrm{~K}
$$

Fair distribution

2 people join to work together

$$
\begin{aligned}
& \mathrm{f}(\mathrm{p} 1)=50 \mathrm{~K} \\
& \left(\mathrm{f}_{\mathrm{p} 1}+\left[\mathrm{f}_{1, p 2}-\mathrm{f}_{\mathrm{p} 2}\right]\right) \quad \longrightarrow \quad \mathrm{f}(\mathrm{p} 2)=70 \mathrm{~K} \\
& \mathrm{Sh}_{\mathrm{p} 2}=1 / 2\left(\mathrm{f}_{\mathrm{p} 2}+\left[\mathrm{f}_{\mathrm{p} 1, \mathrm{p} 2}-\mathrm{f}_{\mathrm{p} 1}\right]\right)
\end{aligned}
$$

$$
S h_{p 1}=1 / 2\left(f_{p 1}+\left[f_{p, 1,2}-f_{p 2}\right]\right)
$$

Fair distribution

2 people join to work together

$$
\mathrm{Sh}_{\mathrm{p} 1}=1 / 2\left(\mathrm{f}_{\mathrm{p} 1}+\left[\mathrm{f}_{\mathrm{p} 1, p 2}-\mathrm{f}_{\mathrm{p} 2}\right]\right) \quad \mathrm{f}(\mathrm{p} 1)=50 \mathrm{~K}(\mathrm{p} 2)=70 \mathrm{~K}
$$

Fair distribution

2 people join to work together

$$
\begin{gathered}
\mathrm{f}(\mathrm{p} 1)=50 \mathrm{~K} \\
\mathrm{Sh}_{\mathrm{p} 1}=1 / 2\left(\mathrm{f}_{\mathrm{p} 1}+\left[\mathrm{f}_{\mathrm{p} 1, \mathrm{p} 2}-\mathrm{f}_{\mathrm{p} 2}\right]\right) \\
\mathrm{Sh}_{\mathrm{p} 1}=50 \mathrm{~K} \quad \mathrm{f}(\mathrm{p} 1, \mathrm{p} 2)=120 \mathrm{~K} \quad \mathrm{Sh}_{\mathrm{p} 2}=1 / 2\left(\mathrm{f}_{\mathrm{p} 2}+\left[\mathrm{f}_{\mathrm{p} 1, \mathrm{p} 2} \quad \mathrm{Sh}_{\mathrm{p} 2}=70 \mathrm{~K}\right.\right.
\end{gathered}
$$

Fair distribution

2 people join to work together

$$
\begin{gathered}
\mathrm{f}(\mathrm{p} 1)=50 \mathrm{~K} \\
\mathrm{Sh}_{\mathrm{p} 1}=1 / 2\left(\mathrm{f}_{\mathrm{p} 1}+\left[\mathrm{f}_{\mathrm{p} 1, \mathrm{p} 2}-\mathrm{f}_{\mathrm{p} 2}\right]\right) \quad \mathrm{f}(\mathrm{p} 2)=70 \mathrm{~K} \\
\mathrm{Sh}_{\mathrm{p} 1}=50 \mathrm{~K} \quad \begin{array}{l}
\mathrm{f}(\mathrm{p} 1, \mathrm{p} 2)=120 \mathrm{~K}
\end{array} \quad \mathrm{Sh}_{\mathrm{p} 2}=1 / 2\left(\mathrm{f}_{\mathrm{p} 2}+\left[\mathrm{f}_{\mathrm{p} 1, \mathrm{p} 2} \quad \mathrm{Sh}_{\mathrm{p} 2}=70 \mathrm{~K}\right.\right.
\end{gathered}
$$

Fair distribution

2 people join to work together

$$
\$ \quad \phi f(\mathrm{p} 2)=70 \mathrm{~K}
$$

$$
S h_{p 1}=1 / 2\left(f_{p 1}+\left[f_{p, p 2}-f_{p 2}\right]\right)
$$

$\mathrm{Sh}_{\mathrm{pl}}=50 \mathrm{~K} \quad \mathrm{f}(\mathrm{p} 1, \mathrm{p} 2)=120 \mathrm{~K}$
$\mathrm{Sh}_{\mathrm{p} 1}=65 \mathrm{~K}$

$$
\begin{aligned}
& f(p 1, p 2)=120 K \\
& f(p 1, p 2)=150 K
\end{aligned}
$$

$\mathrm{Sh}_{\mathrm{p} 2}=70 \mathrm{~K}$
$\mathrm{Sh}_{\mathrm{p} 2}=85 \mathrm{~K}$

Fair distribution

2 people join to work together

$$
f(p 1)=50 K
$$

$$
\phi \quad \phi \quad f(p 2)=70 \mathrm{~K}
$$

$$
S h_{p 1}=1 / 2\left(f_{p 1}+\left[f_{p, p 2}-f_{p 2}\right]\right)
$$

$$
S h_{p 2}=1 / 2\left(f_{p 2}+\left[f_{p 1, p 2}-f_{p 1}\right]\right)
$$

$\mathrm{Sh}_{\mathrm{pl}}=50 \mathrm{~K} \quad \mathrm{f}(\mathrm{p} 1, \mathrm{p} 2)=120 \mathrm{~K}$
$\mathrm{Sh}_{\mathrm{p} 1}=65 \mathrm{~K}$

$$
\begin{array}{ll}
f(p 1, p 2)=120 K & S h_{p 2}=70 K \\
f(p 1, p 2)=150 K & S h_{p 2}=85 K \\
f(p 1, p 2)=100 K &
\end{array}
$$

Fair distribution

2 people join to work together

$$
\$ \quad \& f(\mathrm{p} 2)=70 \mathrm{~K}
$$

$$
S h_{p 1}=1 / 2\left(f_{p 1}+\left[f_{p, p 2}-f_{p 2}\right]\right)
$$

$\mathrm{Sh}_{\mathrm{p} 1}=50 \mathrm{~K}$
$\mathrm{Sh}_{\mathrm{p1}}=65 \mathrm{~K}$
$\mathrm{Sh}_{\mathrm{P} 1}=40 \mathrm{~K}$
$f(p 1, p 2)=120 K$
$f(p 1, p 2)=150 K$
$f(p 1, p 2)=100 K$
$\mathrm{Sh}_{\mathrm{p} 2}=70 \mathrm{~K}$
$\mathrm{Sh}_{\mathrm{p} 2}=85 \mathrm{~K}$
$\mathrm{Sh}_{\mathrm{P} 1}=60 \mathrm{~K}$

Shapley value

Mathematically

- Coalition game
- N : set of p players in a game
- Characteristic function val: $2^{\wedge} p->R, v(\{ \})=0$
- The amount that player j gets given a coalition game (val, N) is

$$
\phi_{j}(v a l)=\sum_{S \subseteq\{1, \ldots, p\} \backslash\{j\}} \frac{|S|!(p-|S|-1)!}{p!}(\operatorname{val}(S \cup\{j\})-\operatorname{val}(S))
$$

A Unified Approach to Interpreting Model Predictions

Scott M. Lundberg
Paul G. Allen School of Computer Science
University of Washington
Seattle, WA 98105
slund1@cs.washington.edu

Su-In Lee

Paul G. Allen School of Computer Science
Department of Genome Sciences
University of Washington Seattle, WA 98105
suinlee@cs.washington.edu

Abstract

Understanding why a model makes a certain prediction can be as crucial as the prediction's accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretability. In response, various methods have recently been proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over another. To address this problem, we present a unified framework for interpreting predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature an importance value for a particular prediction. Its novel components include: (1) the identification of a new class of additive feature importance measures, and (2) theoretical results showing there is a unique solution in this class with a set of

In terms of ML

SHAP

Shapley Additive Explanation

SHAP

Shapley Additive Explanation

$$
\begin{array}{cc}
x & x^{\prime} \\
f(x) & g\left(x^{\prime}\right)
\end{array}
$$

Inputs $\rightarrow \mathrm{x}$
 $$
x^{\prime}
$$

Model $\rightarrow f(x)$
$g\left(x^{\prime}\right)$

$$
\begin{array}{cc}
x & x^{\prime} \leftarrow \begin{array}{c}
\text { Simplified local } \\
\text { inputs }
\end{array} \\
f(x) & g\left(x^{\prime}\right) \leftarrow \begin{array}{c}
\text { Explanatory } \\
\text { model }
\end{array}
\end{array}
$$

X
 $\mathrm{f}(\mathrm{x})$
 $X^{\prime} \leftarrow$ Simplified local inputs
 Explanatory model

As simplified binary vector where features are either included or excluded
$[1,0,0,0,1,1,0,1]$
1.

We need to ensure

If $\quad x \quad \sim \quad x^{\prime}$
Then
$f(x)$
$g\left(x^{\prime}\right)$
2. $g\left(x^{\prime}\right)$ must take this form

$$
g\left(x^{\prime}\right)=\phi_{0}+\Sigma \phi_{i} x_{i}^{\prime}
$$

$g\left(x^{\prime}\right)=\phi_{0}+\sum \phi_{i} x_{i}^{\prime}$

Null Output
Average Output of model

Feature effect

$$
g\left(x^{\prime}\right)=\phi_{0}+\Sigma \phi_{i} x_{i}^{\prime}
$$

Explained Effect of feature i

Feature effect
$g\left(x^{\prime}\right)=\phi_{0}+\Sigma \phi_{i} x_{i}^{\prime}$

Explained Effect of feature i
How much feature i changed the output of the model

Feature effect
 $g\left(x^{\prime}\right)=\phi_{0}+\Sigma \phi_{i} x_{i}^{\prime}$
 Null Output

$$
g\left(x^{\prime}\right)=\phi_{0}+\Sigma \phi_{i} x_{i}^{\prime}
$$

Additive Feature Attribution

Authors describe

3 desirable properties of such an additive method

Missingness

Consistency

Local Accuracy

$$
f(x) \sim g\left(x^{\prime}\right) \text { if } x^{\prime} \sim x
$$

Missingness

Local Accuracy

$$
x^{\prime}{ }_{i}=0=>\Phi_{i}=0
$$

Consistency

Consistency

Local Accuracy

Missingness

If feature contribution changes
the feature effect cannot change in the opposite direction

Shapley value
 $$
g\left(x^{\prime}\right)=\phi_{0}+\Sigma \phi_{i} x_{i}^{\prime}
$$

4 Features: 64 coalitions to sample

32 Features: 17.1 billion coalitions to sample

Shapley Kernel

Means of approximating Shapley values through much fewer samples

Shapley Kernel

Means of approximating Shapley values through much fewer samples

Explain this data sample

Shapley Kernel

Means of approximating Shapley values through much fewer samples

Background dataset

$\longrightarrow E\left[y_{124} \forall i \in B\right]$

\bar{y}_{124}

\# Total features -1

$\mathrm{Wc}=$ \# coalitions of size $|\mathrm{C}|$ * \# included features in $|\mathrm{C}|$ * \# excluded features in |C|

References

- Article: Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Proceedings of the 31st international conference on neural information processing systems. 2017.
- Video: https://www.youtube.com/watch?v=VB9uV-x0gtg\&t=444s
- Wikipedia page: https://en.wikipedia.org/wiki/Shapley_value
- Book: https://christophm.github.io/interpretable-ml-book

About Me

Nikhil Verma

- University of Toronto
- Master of Science in Applied Computing
- Thapar University
- Bachelor of Engineering
- InfoEdge (India) Ltd
- Senior Software Engineer
- MentorGraphics (Siemens) India Pvt Ltd
- Software Engineering Intern
- Indian Institute of Technology(IIT) Delhi
- Project Associate

Interested in designing products for scale

Thank You

For being patient listeners

