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Goal: Predicting Disease from X-Ray Images
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SSRL Medical Images
Medical Datasets provide several unique characteristics that may be useful for SSL

• Multiple images from various angles may be recorded for a single patient 
o Can help learn more robust self supervised representations

• Images are paired with useful metadata (age, heart-rate, blood pressure, lab tests)
o Available at test time (can be a model input)

• Datasets much as MIMIC-CXR contain labels for various diseases and clinical findings
o Not available at test time (cannot be a model input)
o Still adds information for learning representations while training
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Contrastive Learning
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Related Work: MOCO [He et al. 2020]
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Related Work: MedAug [Yen et al. 2021]
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MedAug ⟶ DisCeRn  (Disease-Contrastive Representations)

● MedAug/MoCo treat all negative samples (= different patients) equal

● This means they don't express any preference on how the samples should be 
organized in the representation space

● Does it help if we maximize the distance to some negative samples stronger 
than others?

● This blurs the lines between 
self-supervision and finetuning, 
but may help even for unrelated 
tasks
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Related Work: MedAug [Yen et al. 2021]
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Our Approach: DisCeRn
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MedAug ⟶ DisCeRn  (Our Approach)

There are more diseases that can be classified using chest x-rays than our 14:

● COVID-19
● tumors
● aortic aneurysm
● lung emphysema
● diaphragmatic hernia

⇒ Potential problem: does the promoted cluster organisation obscure useful

information for the classification of other diseases?
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MedAug ⟶ DisCeRn  (Our Approach)
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MedAug ⟶ DisCeRn  (Our Approach)
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MedAug ⟶ DisCeRn  (Our Approach)

● At inference time, we have more information available than just the X-ray image

● Does it help for downstream tasks if we append information such as O2 
saturation or lab values to the image representation or are these sufficiently 
captured by the pretrained model already?

O2 Sat resprate Lab

P1 94 17.5 33 15.5 4.03

[0.234, -0.857, …, 0.462, 0.947]

[0.234, -0.857, …, 0.462, 0.947]   +

vs.
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Datasets
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MIMIC-CXR-JPG MIMIC-IV CheXpert
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377,110 images
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224,316 images 
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O2 Sat resprate Lab

P1 94 17.5 33 15.5

P2 98 16 35 12



Subsets Used for Supervised Training (Only Labels 1 and 0 for Pneumonia)
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Experimental Setup: Pre-training phase
● Pretraining: 

(per experiment) 
2 GPU weeks on 
RTX A600 48GB

● Dataset: 
MIMIC-CXR (337K 
images)

● Augmentations: 
Rotate, Crop, Flip

Experiment 1
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CheXpert
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CheXpert

MIMIC-CXR + 
extra features 

from MIMIC-IV 
(heart rate, 

O2 saturation, 
blood pressure)

Experimental Setup: Fine-tuning phase (end-to-end)
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Expected Results
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● MoCo  <  MedAug  <  DisCeRn

● DisCeRn  <  DisCeRn on MIMIC-CXR + MIMIC-IV

● Linear  <  End-End 

● All perform better than ImageNet baseline



Experimental Results (AUROC)
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Method CheXpert
Train 8838 | Test: 234

MIMIC-CXR
Train: 68057 | Test: 495

MIMIC-CXR + MIMIC-IV
Train: 68057 | Test: 495

MoCo (Linear) 84.98% 79.14% 71.82%

MoCo (End-to-End) 88.42% 79.63% 73.36%

MedAug (Linear) 88.11% 78.74% 73.99%

MedAug (End-to-End) 85.10% 80.88% 78.00%

DisCeRn (Linear) 86.25% 78.64% 72.76%

DisCeRn (End-to-End) 89.03% 80.51% 75.59%

Baseline (ImageNet Init / End-to-End) 87.57% 76.91% 68.48%



Experimental Results (MIMIC-CXR)
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DisCeRn + MIMIC-IVMedAug

F1-score: 0.69 F1-score: 0.69



Limitations
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● Adding features from MIMIC-IV severely punishes performance
       ⇒  Better data fusion methods besides concatenation should be explored 

● While extended medaug appears to outperform SOTA, small test set sizes provide low 
statistical confidence on this improvement
       ⇒  Further statistical testing (i.e random permutation test) is required

● Moco is not required to produce embeddings that are linearly separable
       ⇒  More downstream layers may be required for classification

● Minimal hyperparameter tuning was performed (architecture, optimizer, scheduler, …)

● No exploration of how test prediction quality changes with smaller # of training samples 

● Lack of comprehensive evaluations for different pathology labels



Conclusions
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● Using domain knowledge related to medical imaging shows promise to 
improve self supervised learning (SSL)

● Labels for diseases marginally related to a target disease can be 
helpful for improving SSL

    ⇒ i.e a label for Pleural effusion might be useful while pre training to learn Pneumonia



QUESTIONS
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Experimental Results 
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