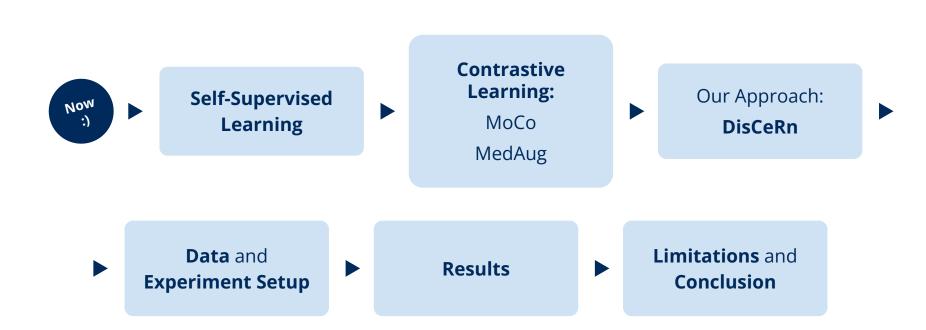
DisCeRn: Disease-Contrastive Representations From Multi-Modal Medical Data

Vahid Balazadeh, Tom Ginsberg, Korbinian Koch, Vasudev Sharma December 8th 2021

Google Research changes the game for medical imaging with self-supervised learning

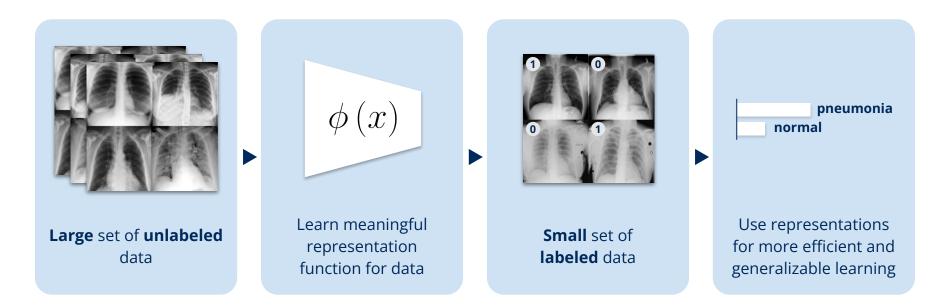
Image Credit: MAD.vertise/Shutterstock

Goal: Predicting Disease from X-Ray Images



Outline

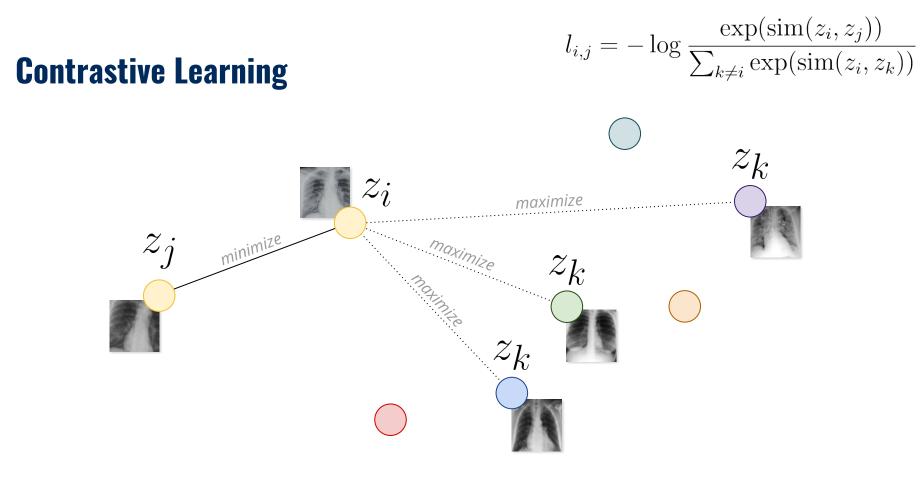
Self Supervised Representation Learning (SSRL)



SSRL Medical Images

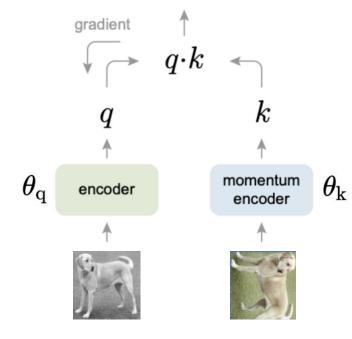
Medical Datasets provide several unique characteristics that may be useful for SSL

- Multiple images from various angles may be recorded for a single patient
 - Can help learn more robust self supervised representations
- Images are paired with useful metadata (age, heart-rate, blood pressure, lab tests)
 - Available at test time (can be a model input)
- Datasets much as MIMIC-CXR contain labels for various diseases and clinical findings
 - **Not available at test time** (cannot be a model input)
 - o Still adds information for learning representations while training



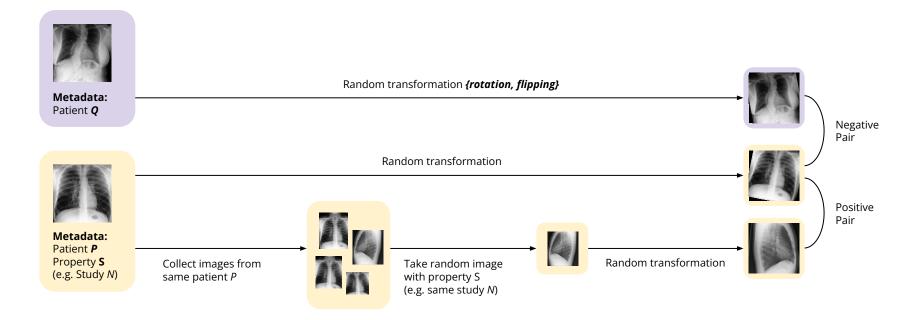
Related Work: MOCO [He et al. 2020]

contrastive loss



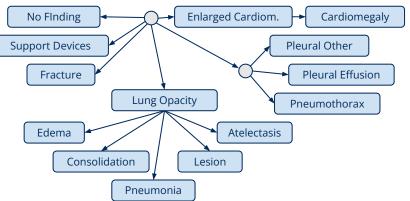
 $\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$

Related Work: MedAug [Yen et al. 2021]

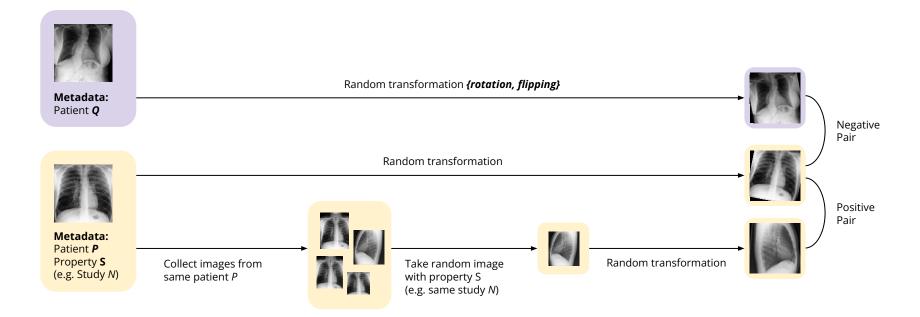


MedAug → DisCeRn (Disease-Contrastive Representations)

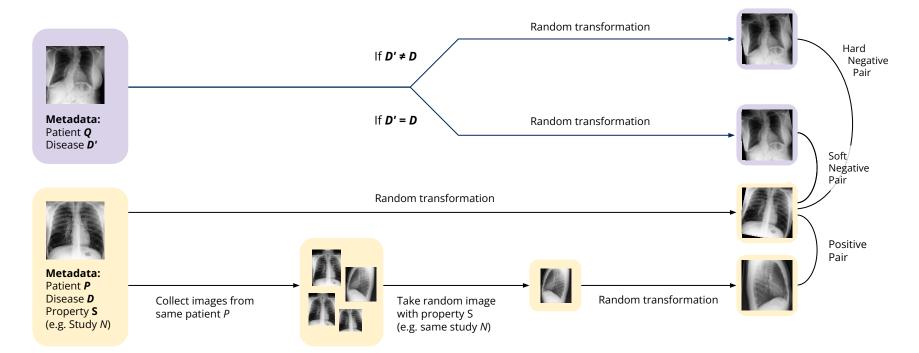
- *MedAug/MoCo* treat all negative samples (= different patients) equal
- This means they don't express any preference on how the samples should be organized in the representation space
- Does it help if we maximize the distance to some negative samples stronger than others?
- This blurs the lines between self-supervision and finetuning, but may help even for unrelated tasks



Related Work: MedAug [Yen et al. 2021]



Our Approach: DisCeRn

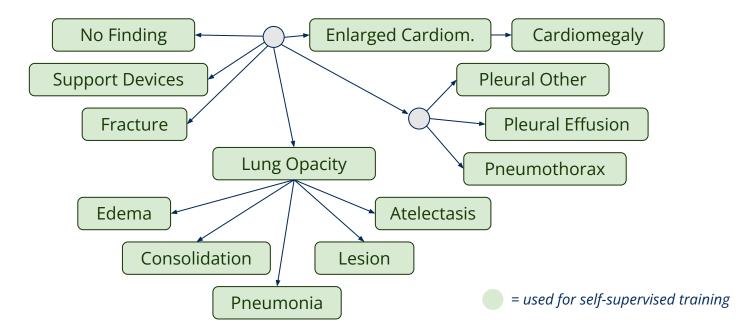


$MedAug \rightarrow DisCeRn \quad (Our Approach)$

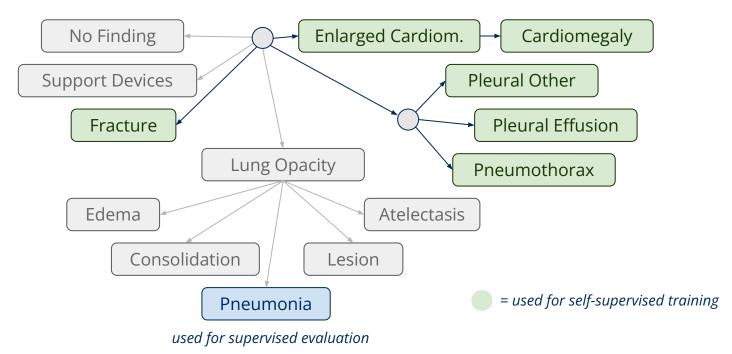
There are more diseases that can be classified using chest x-rays than our 14:

- COVID-19
- tumors
- aortic aneurysm
- lung emphysema
- diaphragmatic hernia
- ⇒ Potential problem: does the promoted cluster organisation obscure useful information for the classification of other diseases?

$MedAug \rightarrow DisCeRn \quad (Our Approach)$

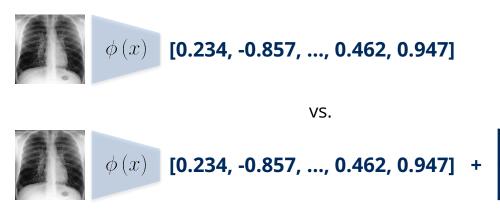


$MedAug \rightarrow DisCeRn \quad (Our Approach)$



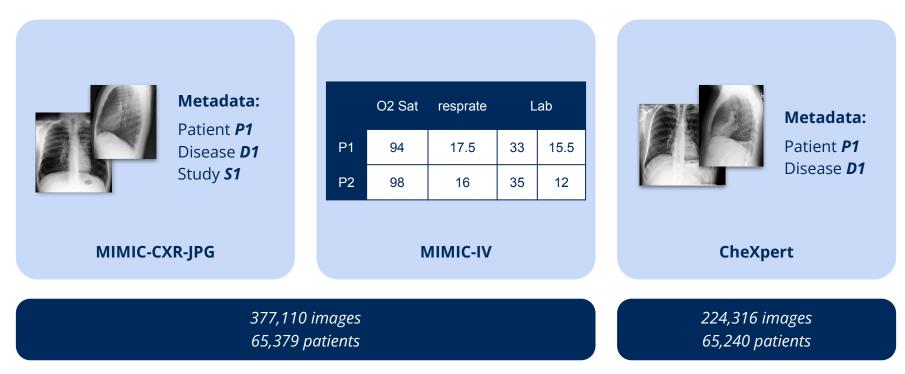
$MedAug \rightarrow DisCeRn$ (Our Approach)

- At inference time, we have more information available than just the X-ray image
- Does it help for downstream tasks if we append information such as O2 saturation or lab values to the image representation or are these sufficiently captured by the pretrained model already?

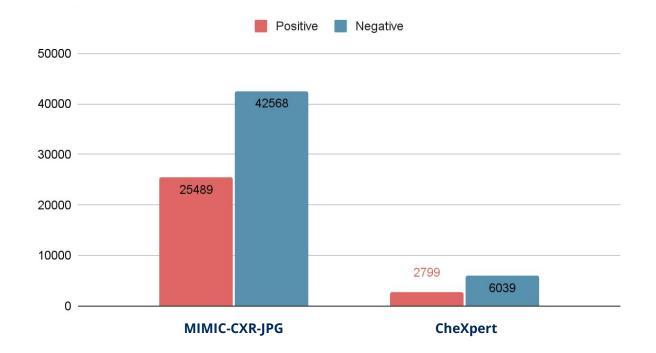


	O2 Sat	resprate	Lab		
P1	94	17.5	33	15.5	4.03

Datasets



Subsets Used for Supervised Training (Only Labels 1 and 0 for Pneumonia)



Experimental Setup: Pre-training phase

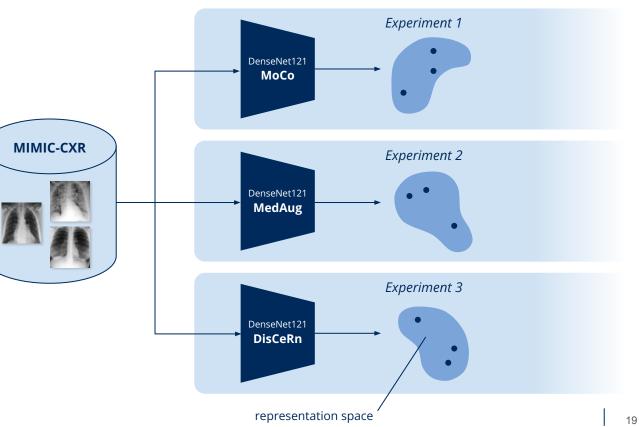
 Pretraining: (per experiment)

2 GPU weeks on RTX A600 48GB

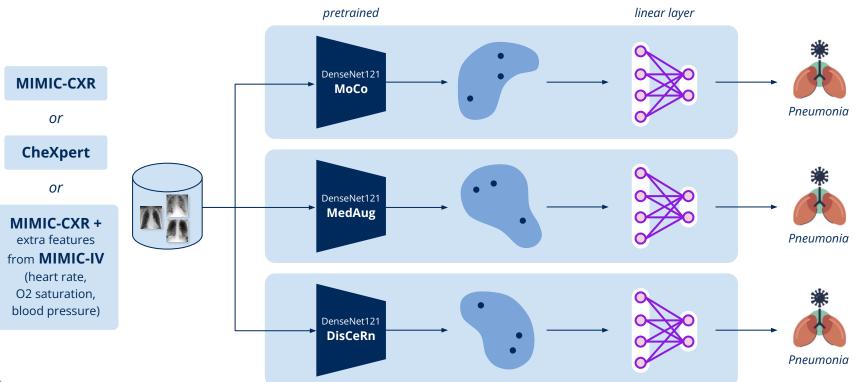
- Dataset: MIMIC-CXR (337K images)
- Augmentations:
 Rotate, Crop, Flip

UNIVERSITY OF

ORONTO

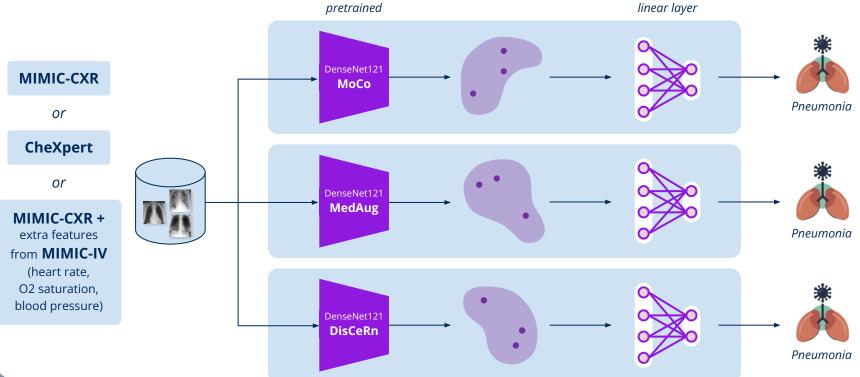


Experimental Setup: Fine-tuning phase (linear)



= trainable

Experimental Setup: Fine-tuning phase (end-to-end)



= trainable

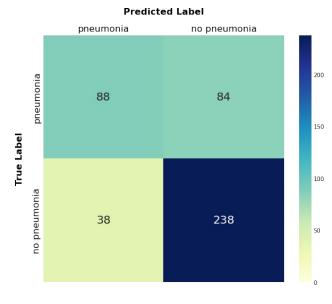
Expected Results

- MoCo < MedAug < DisCeRn
- DisCeRn < DisCeRn on MIMIC-CXR + MIMIC-IV
- Linear < End-End
- All perform better than ImageNet baseline

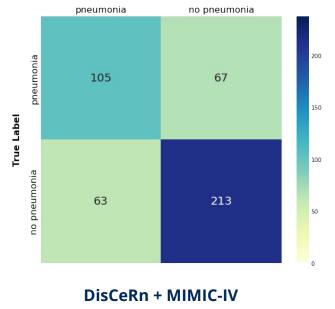
Experimental Results (AUROC)

Method	CheXpert Train 8838 Test: 234	MIMIC-CXR Train: 68057 Test: 495	MIMIC-CXR + MIMIC-IV Train: 68057 Test: 495
MoCo (Linear)	84.98%	79.14%	71.82%
MoCo (End-to-End)	88.42%	79.63%	73.36%
MedAug (Linear)	88.11%	78.74%	73.99%
MedAug (End-to-End)	85.10%	80.88%	78.00%
DisCeRn (Linear)	86.25%	78.64%	72.76%
DisCeRn (End-to-End)	89.03%	80.51%	75.59%
Baseline (ImageNet Init / End-to-End)	87.57%	76.91%	68.48%

Experimental Results (MIMIC-CXR)



MedAug



F1-score: 0.69

Predicted Label

24

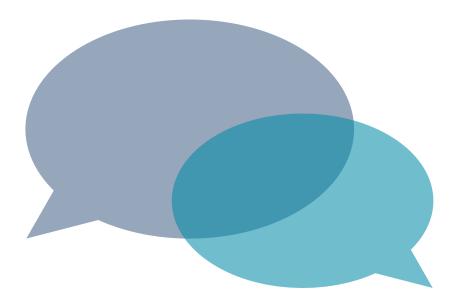
Limitations

- Adding features from MIMIC-IV severely punishes performance
 - ⇒ Better data fusion methods besides concatenation should be explored
- While extended medaug appears to outperform SOTA, small test set sizes provide low statistical confidence on this improvement
 - ⇒ Further statistical testing (i.e random permutation test) is required
- Moco is not required to produce embeddings that are linearly separable
 - ⇒ More downstream layers may be required for classification
- Minimal hyperparameter tuning was performed (architecture, optimizer, scheduler, ...)
- No exploration of how test prediction quality changes with smaller # of training samples
- Lack of comprehensive evaluations for different pathology labels

Conclusions

- Using domain knowledge related to medical imaging shows promise to improve self supervised learning (SSL)
- Labels for diseases marginally related to a target disease can be helpful for improving SSL
 - ⇒ i.e a label for Pleural effusion might be useful while pre training to learn Pneumonia

QUESTIONS



Experimental Results

