Fledge: Edge-based Federated
Learning Framework for
Mobile Healthcare
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@ Initialise local models

@ Train model with local data

@ Transfer model weights
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Fledge Framework

@ Initialise local models

@ Train model with local data

@ Transfer model weights

@ Aggregate model weights
@ Transfer new model weights

@ Apply new model weights
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Fledge Framework : Key Features

Generic: Provides support for any ML model uploaded by
model/application developer.

Real-world Deployment: Deployment environment supports
actual edge devices on real-world infrastructure, rather than
only simulated mode.

Resource Awareness: Framework must split the model
intelligently between available resources to ensure good
resource utilisation and accuracy.
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Prior Work in ML Healthcare

“FEEL: A Federated Edge Learning System for Efficient and
Privacy-Preserving Mobile Healthcare”

Proposes splitting of model to manage resource consumption
Just a proof-of-concept of the splitting idea, no algorithm
proposed for a generic framework



Why Federated Learning for ML Healthcare?

Proliferation of data collection points - smart wearables,
electronic health records, personal health monitors
Centralised processing of all information
Privacy-sensitiveness of data

Data ownership

Complexity of ML models



Research Questions

RQ1: Can the federated mode of the framework provide similar
accuracy as centralised mode? (Accuracy vs Privacy)

RQ2: Does the federated mode of the framework add any extra
overheads on performance? (Training time, Communication
latency, Processing overheads)

RQ3: Can we design an algorithm that splits any given ML
model to maintain good resource consumption and accuracy?



Perf Eval - Dataset

MNIST Dataset: Images of handwritten numbers from 0-9.
No. of datapoints: 70,000 images

Breast Cancer Dataset: Multiple features of patient with cancer
diagnosis - malignant or benign

No. of datapoints: 648
No. of features: 9
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Perf Eval - Candidates

Centralised Mode: Data collected from all clients available at
the centralised server to train a global model.

Local Mode: Each client has its own local data and local ML
model to train.

Federated Mode: Each client uses its own local data to train a
globally distributed and aggregated model. Model params
aggregated using FedAvg algorithm.

11



Perf Eval - Infra

Server Node (Cloud):
CPU: 3.1Gz @ Intel Xeon® Platinum 8175M
Memory: 16 GB
Cores: 4
Client Node (Edge):
CPU: AWS Graviton Processor
Memory: 8 GB
Cores: 1
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Performance Evaluation: Accuracy
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Perf Eval - Accuracy - MNIST Dataset
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Perf Eval - Accuracy - Breast Cancer Dataset
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# of Datapoints

Perf Eval - Data Distribution
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Perf Eval - Accuracy - Breast Cancer Dataset
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Splitting ML Model for Breast Cancer Dataset

Client Server
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Perf Eval - Pending Results

Training times of each mode

Resource consumption when entire model is deployed
Resource consumption when the model is split

Accuracy of model in split mode vs federated mode
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Limitations / Future Work

Algorithm to derive the split point of a model
Minimising processing and communication latency

Experiments to include more complex models, unsupervised
models, larger infrastructure deployment, etc.

Applicable only for fully connected layers in neural network
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