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Introduction

■ Cardiovascular diseases account for the death of every 1 in 4 persons in the US1

■ An ECG (electrocardiography) records the electrical activity of heart at rest

■ Provides information about
● heart rate and rhythm
● enlargement of the heart due to high blood pressure (hypertension)
● evidence of a previous heart attack (myocardial infarction)

■ Automated classification of ECG signals can aid in
● Early diagnosis of heart diseases

1https://www.cdc.gov/heartdisease/facts.htm



Challenges with ECG Data

■ Limited labeled data

■ Datasets recorded at different 
configurations

● Signal frequency

● Time duration

● Diagnostic code formats

● Only specific leads available
◦ A 12-lead ECG paints a complete picture of the 

heart's electrical activity by recording information 
through 12 different perspectives. 

Solution?

Transfer Learning

Semi-supervised 
Learning

Data 
Augmentation
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 Freezing a layer prevents its weights from being modified.

Gradual Unfreezing



Related Work

■ Most current research focuses on transfer learning for classification of specific 
heart abnormalities

● Weimann et al. "Transfer learning for ECG classification." Scientific reports (2021)

■ This paper hypothesized that PTB-XL, largest 12-lead ECG dataset released 
recently, could serve as a prospective base dataset for transfer learning 

● Strodthoff, Nils, et al. "Deep learning for ECG analysis: Benchmarks and insights from 
PTB-XL." IEEE Journal of Biomedical and Health Informatics (2020)

■ Evaluation on data subsets to verify the potential of transfer learning
● Jang, Jong-Hwan et al. "Effectiveness of Transfer Learning for Deep Learning-Based 

Electrocardiogram Analysis." Healthcare informatics (2021)



1https://physionet.org/content/ptb-xl/1.0.1/
2https://www.kaggle.com/bjoernjostein/georgia-12lead-ecg-challenge-database

Main Idea

Key Contributions: 
■ Pre-train ECG classification model 

using PTB-XL

■ Finetune and evaluate performance 
on G12EC

■ Compare with the best standalone 
model trained on G12EC 

PTB-XL1

(Base Dataset)
G12EC2

(Evaluation 
Dataset)

No. of Records 21,837 10,344

No. of Leads 12

Frequency 500 Hz

Time Duration 10 seconds

Goal: Test whether PTB-XL is a good dataset for transfer learning for ECG classification

https://physionet.org/content/ptb-xl/1.0.1/
https://www.kaggle.com/bjoernjostein/georgia-12lead-ecg-challenge-database


Data Summary

■ Label distribution for both datasets is quite different

■ Will transfer learning still work?

   18

G12EC 
(24)

PTB-XL 
(44)

■ PTB-XL has 5 diagnostic superclasses and 44 
subclasses
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Methodology - Pre-training on PTB-XL

 PTB-XL  44 Diagnostic 
 classes



Methodology - Fine-tuning on G12EC

 G12EC  18 Diagnostic 
 classes



Task Macro AUC

PTB-XL Pre-training 0.947

G12EC Fine-tuning 0.916  (+0.073)

Results

Performance of G12EC fine-tuned using model pre-trained on PTB-XL

Performance of different models trained only on G12EC dataset (independent)

Model Macro AUC

XResNet 0.843

ResNet 0.785

InceptionNet 0.685



Results: Class-wise performance 



Experiment 1: Performance using G12EC subsets

■ Fine-tuned model performs 
consistently better than 
independent model

■ Gap increases as training data for 
fine-tuning is reduced

■ Test AUC of fine-tuned model only 
drops by ~0.07 when the training 
data is reduced to 10% 



■ Used 10% of G12EC for a fair 
comparison

■ As expected model performance 
drops with decrease in data used 
for pre-training

■ Performance of fine-tuned 
model is better even after 
pre-training on 25% PTB-XL data

Experiment 2: Performance by PTB-XL subsets



Experiment 3: Frequency downsampling

■ PTB-XL performance remained 
almost same on lower frequency

■ G12EC performance dropped 
significantly

■ G12EC loses significant 
information at lower frequencies



Experiment 4: Calibration
 What is calibration?

 A model is perfectly calibrated if, for any probability value p, a prediction of a class 
with confidence p is correct 100*p per cent of the time

Platt’s Scaling



Experiment 4: Calibration (WIP)



Experiment 5: Frequency Domain Analysis

■ Macro AUC on PTB-XL model drops 
significantly

■ This effect on performance 
propagates to the fine-tuned model 
on G12EC

■ Further work is required to 
understand the reasons behind the 
drop in model performance

Component PTB-XL G12EC Fine-tuned

Absolute 0.668 0.555

Real 0.664 0.508

Imaginary 0.614 -



Conclusion

■ PTB-XL is a good dataset for transfer learning: fine-tuning achieves ~7% increase in 
performance over independently trained model

■ Even with different label distributions the transfer learning performed well

■ Existing literature focuses on a single or a certain class of diagnosis

■ Implication: milestone for classification on thousands of smaller datasets currently 
available



Limitations / Future Work

■ Model might not perform well in cases when labels for both datasets are different
○ Use techniques to match label distribution which could potentially improve 

finetune performance

■ Performance drops significantly on lower frequency data
○ Find techniques to preserve most useful information in lower frequencies

■ Current datasets were quite similar, can test the technique on diverse datasets

■ Test if information from one lead or a particular waveform contributes more to the 
performance

■ Improve the underlying architecture that can
○ Learn from periodic patterns in ECG signals
○ Demonstrate invariance to frequency changes



Thank You

Questions?


