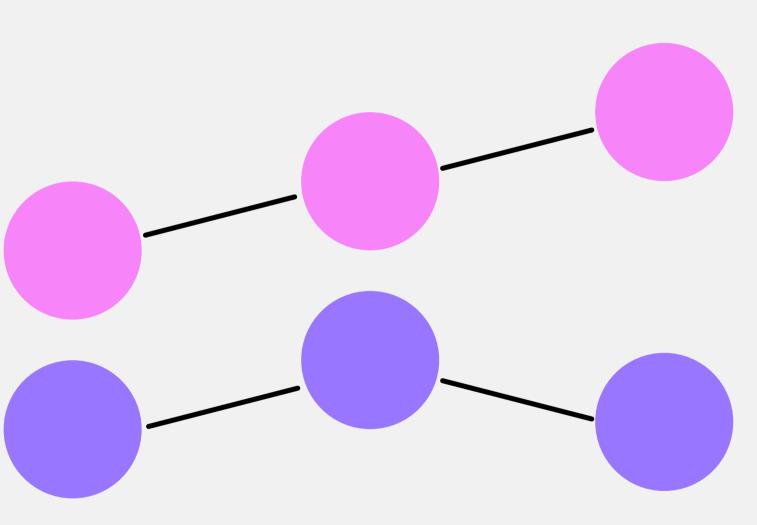
MACHINE LEARNING 4 HEALTHCARE 2021

TAGS: <u>Time</u> <u>Adaptive Global</u> <u>State Model</u>

Sujay Nagaraj, Cait Harrigan, Aslesha Pokhrel



Motivation

Unsupervised state detection is a general challenge in heathcare data

- Don't have ground truth for underlying population structure
- Can be hard to compare across individuals

One approach: define physiological states based on signal correlations (Tozzo et al. 2021)

- Efficiently summarize high-dimensional relationships with sparse graphical structure
- Strong physiological grounding relationship between features more important than the raw feature values
- Interpretable state visitation can be directly compared within individuals

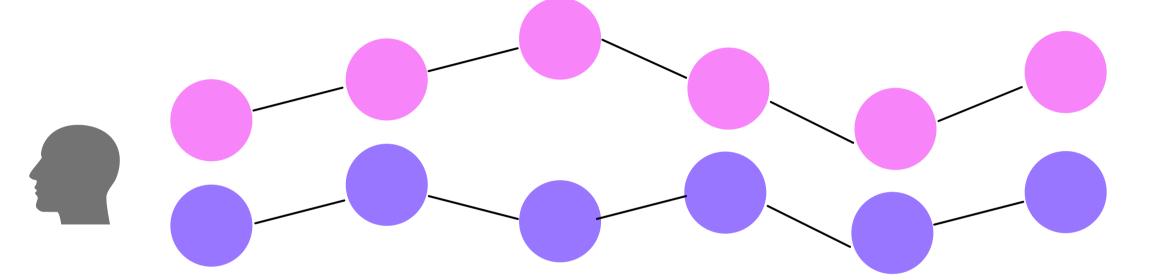
Problem Setting - Stress

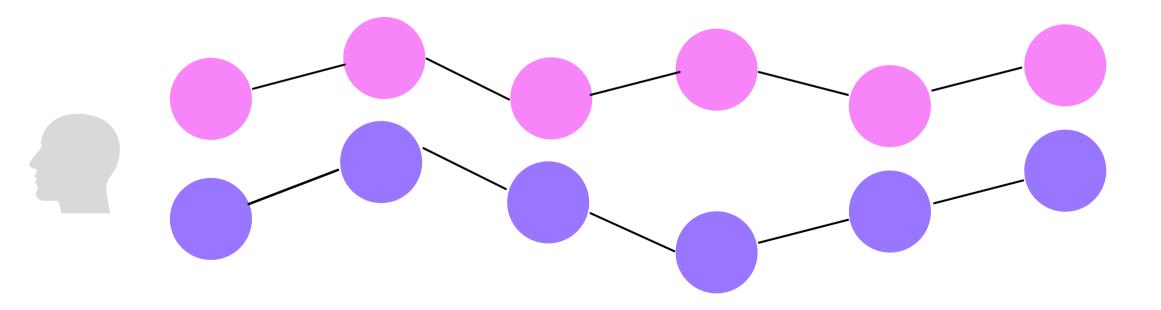
- Wearables collect high-dimensional and high-resolution timeseries data
- Stress is latent and difficult to measure
 - We don't have good labels in the wild
 - We don't fully understand how it manifests

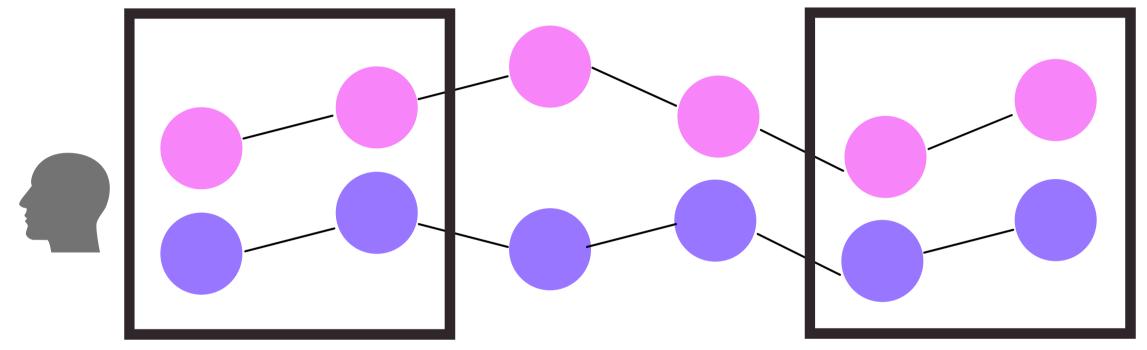
Problem Setting - Stress

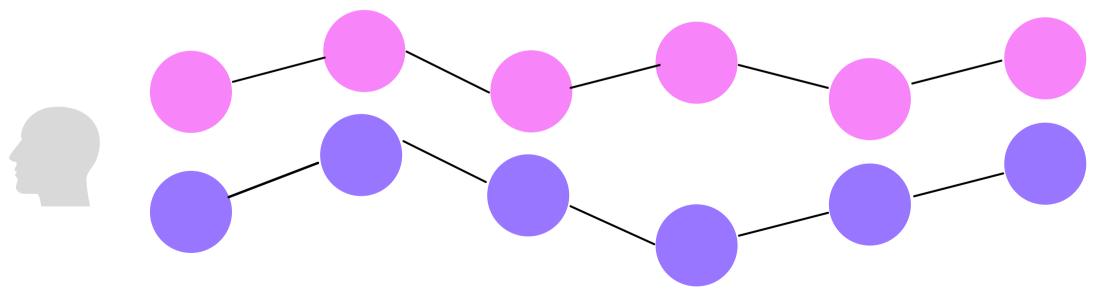
- Wearables collect high-dimensional and high-resolution timeseries data
- Stress is latent and difficult to measure • We don't have good labels in the wild • We don't fully understand how it manifests
- Stress might look different for different people • Overarching question: are there subtypes (or archetypes) of stress
- State change can be volatile
- Stress is it's own disease process but also may impact other diseases

State Space Models for clustering are needed

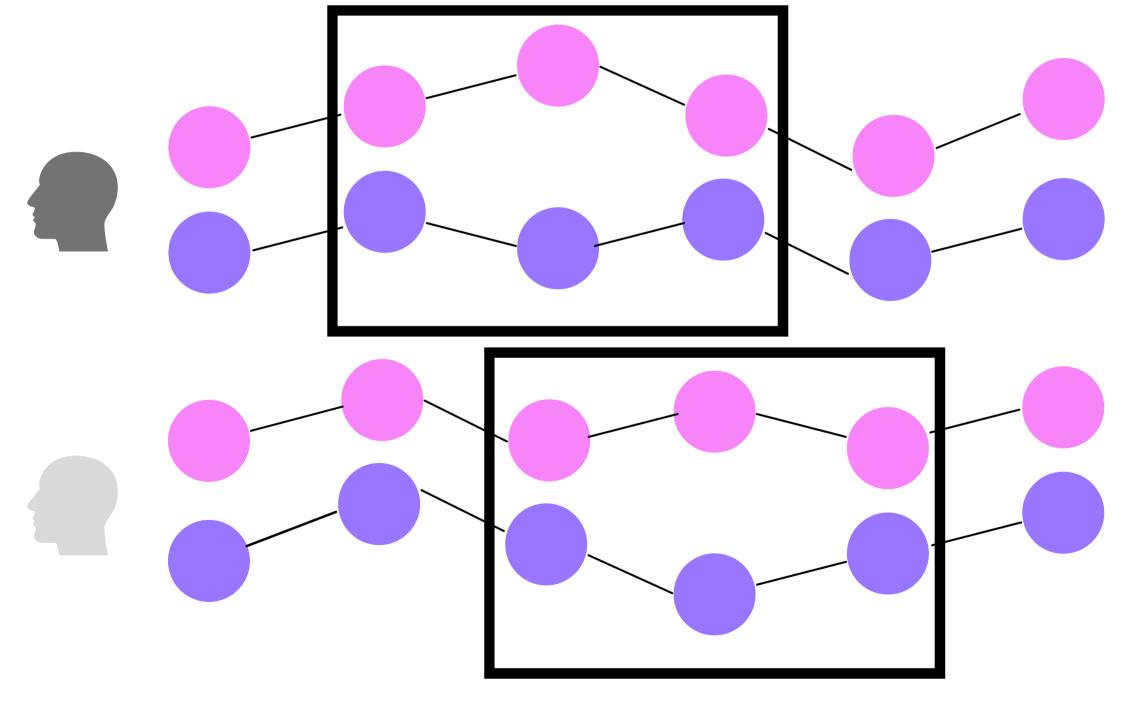




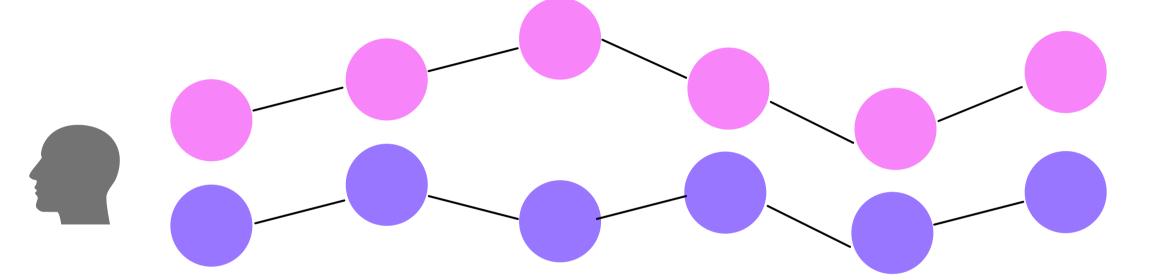


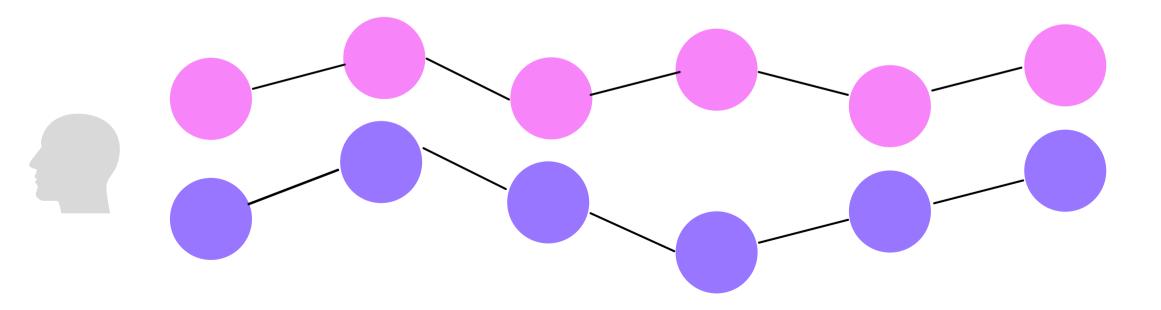


Local States



Global States

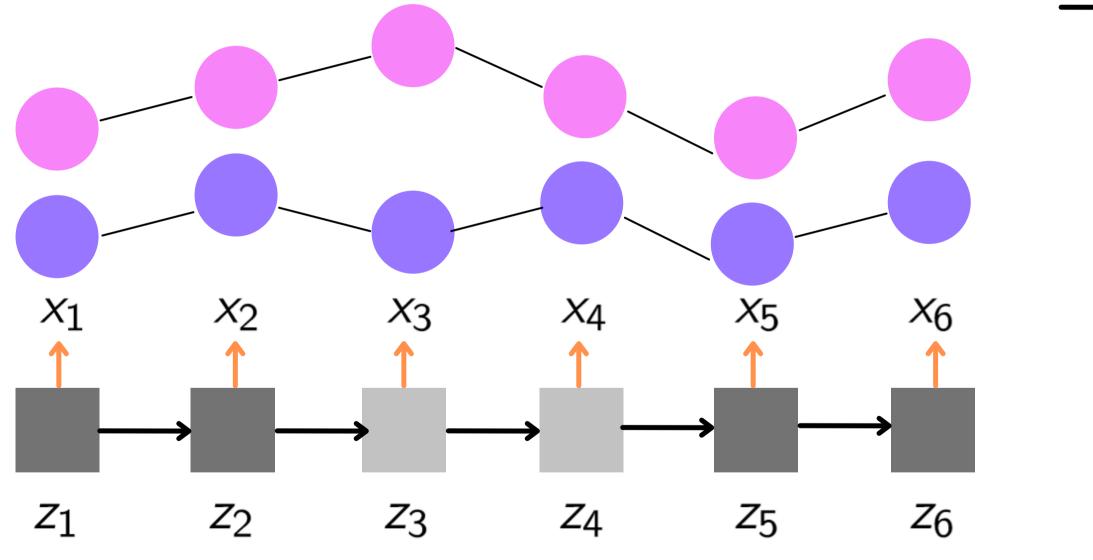




Sharing **global** information about states between individuals may give us insight into population structure

- What states some or all individuals pass through?
- Are there sub-populations within characteristic state visitation behaviours?
- Is there heterogeneity within a given state across individuals?

Timeseries is modelled as HMM



Features are modeled as multivariate normal, parameterized according to the state assignment

Transition probability $p(z_{t+1}|z_t)$ Emission probabilities $p(x_t|z_t)$

 $x_1, x_2, x_5, x_6 \sim N($ $x_3, x_4 \sim N($

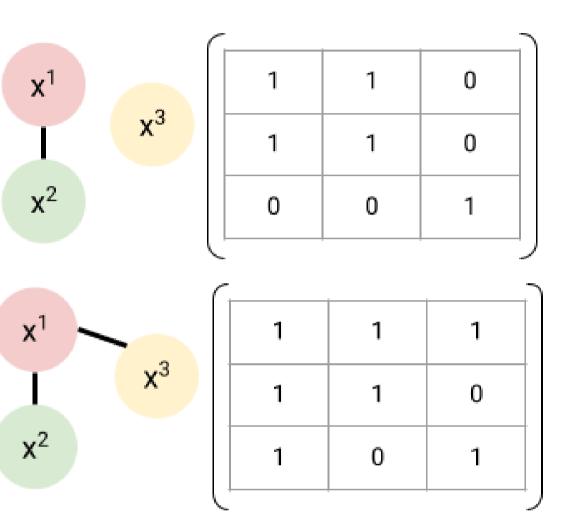
State Definitions

- Each state is defined by conditional dependencies between features
- Edge in graph corresponds to >0 covariance
- Physiological grounding each patient may have their own baseline feature value

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008

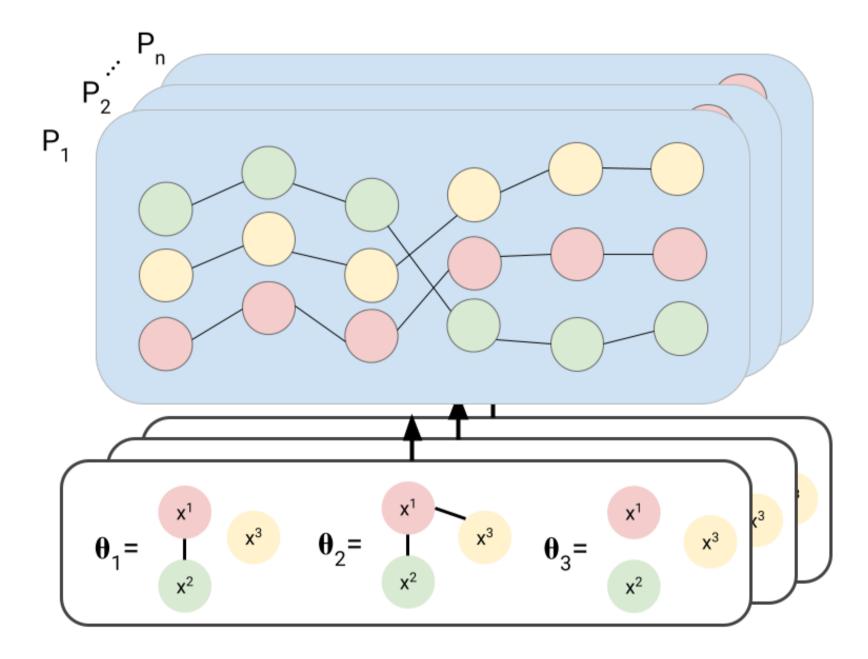
θ₁=

 $\theta_2 =$



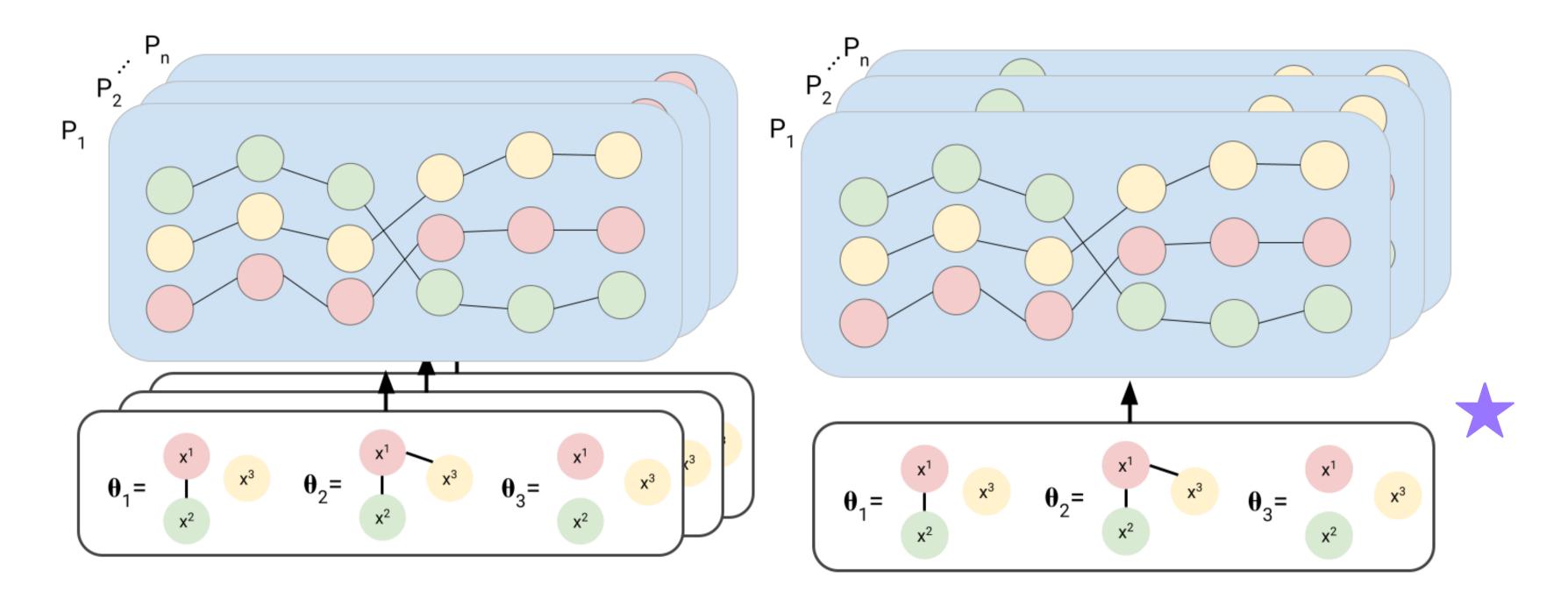
$$x_1, x_2, x_5, x_6 \sim N(\mu_p, \mathbf{\theta}_1^{-1})$$
 $p(x_t|z_t)$
 $x_3, x_4 \sim N(\mu_p, \mathbf{\theta}_2^{-1})$ \longrightarrow

VANILLA



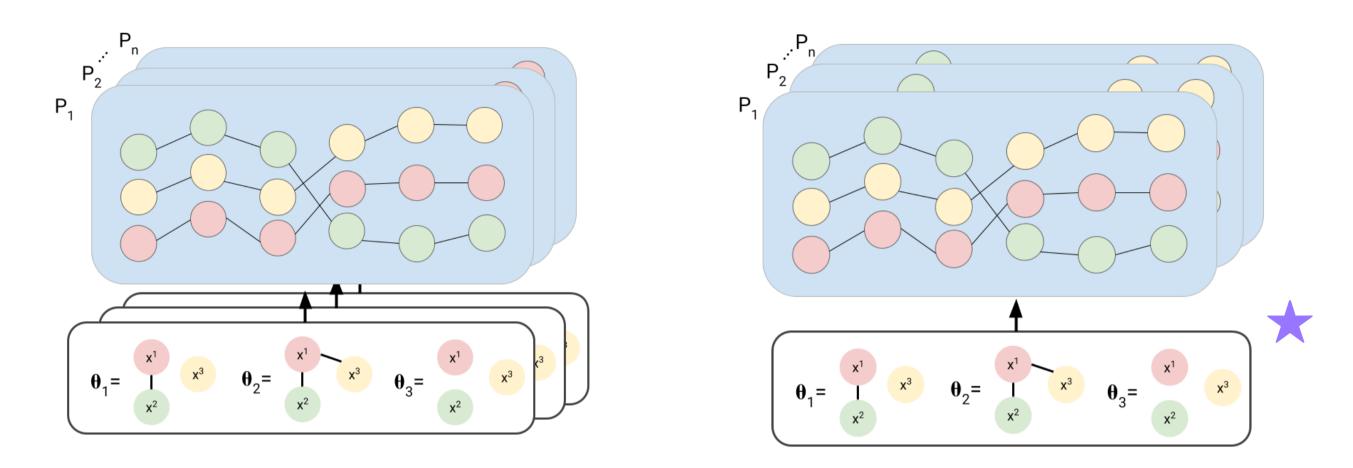
Veronica Tozzo, Frederico Ciech, Davide Garbarino, Alessandro . Verri Statistical Modela Coupling Allows for Complex Local Multivariate Time Series Analysis, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, New York, NY, USA, Aug. 2021

VANILLA



Veronica Tozzo, Frederico Ciech, Davide Garbarino, Alessandro . Verri Statistical Modela Coupling Allows for Complex Local Multivariate Time Series Analysis, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, New York, NY, USA, Aug. 2021

TAGS (OURS)

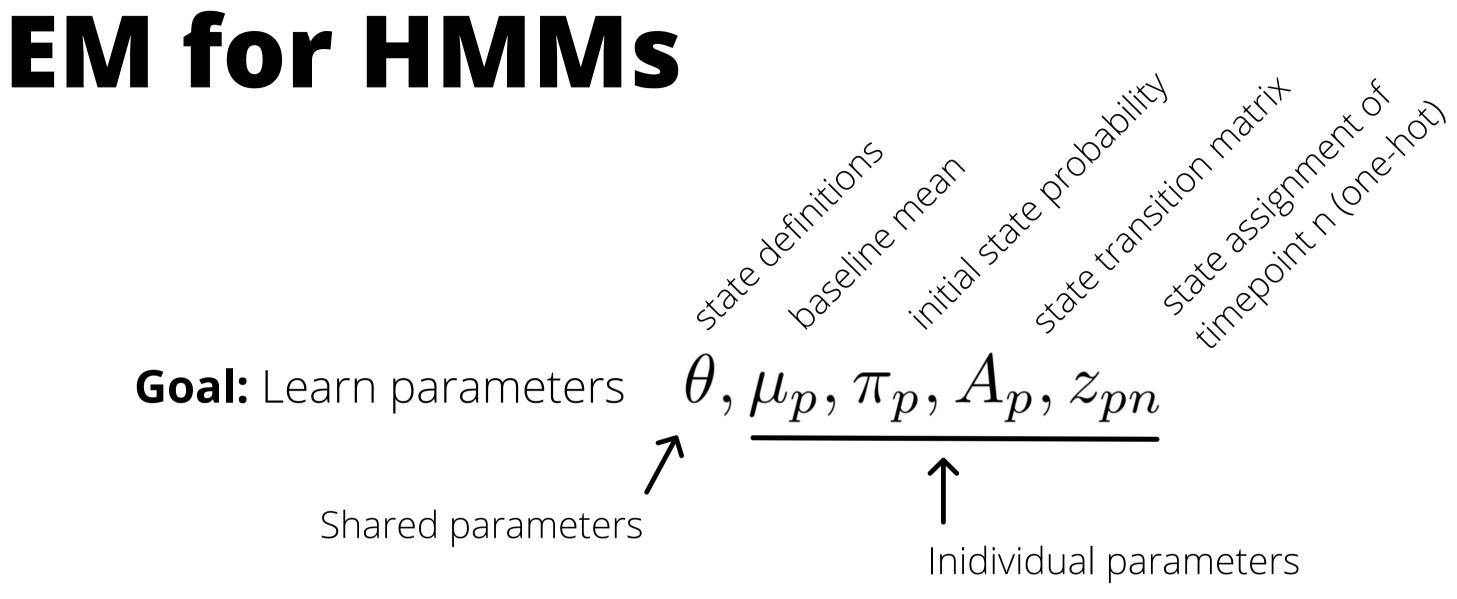


	Vanilla	TAGS
	Fits one single time series	Fits severa shared betv
E-step M-step	Update state assignments for all timepoints Update individual $\mu_p, \pi_p, A_p, \theta_p$	Update stat Update ind

TAGS (OURS)

ral time series with state information tween patients

ate assignments for all timepoints dividual μ_p, π_p, A_p and global θ

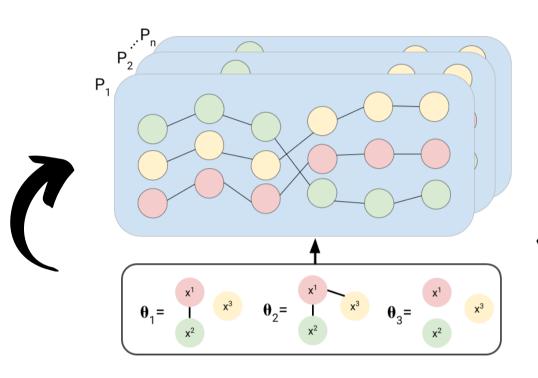


Model posterior:

$$\prod_{p=1}^{P} \left(p(z_{p,1}|\pi_p) \prod_{n=2}^{N_p} [p(z_{p,n}|z_{p,n-1}, A_p)] \prod_{n=1}^{N_p} \prod_{k=1}^{N_p} \prod_{k=1}^{N_p} [p(z_{p,1}|\pi_p) \prod_{k=1}^{N_p} [p(z_{p,1}$$

 $\prod_{k=1}^{K} \mathcal{N}(x_{pn} | \mu_{pk}, \theta_k^{-1})^{z_{pnk}} \right)$

EM for HMMs



E-step: Assign each timepoint to a state (via maximum likelihood)

$$\prod_{p=1}^{P} \left(p(z_{p,1}|\pi_p) \prod_{n=2}^{N_p} [p(z_{pn}|z_{p,n-1}, A_p)] \prod_{n=1}^{N_p} \prod_{k=1}^{K} \mathcal{N}(x_{pn}|\mu_{pk}, \theta_k^{-1})^{z_{pnk}} \right)$$

States are clustered during training

M-step: Update how each state is defined (based on all the timepoints assigned to them)

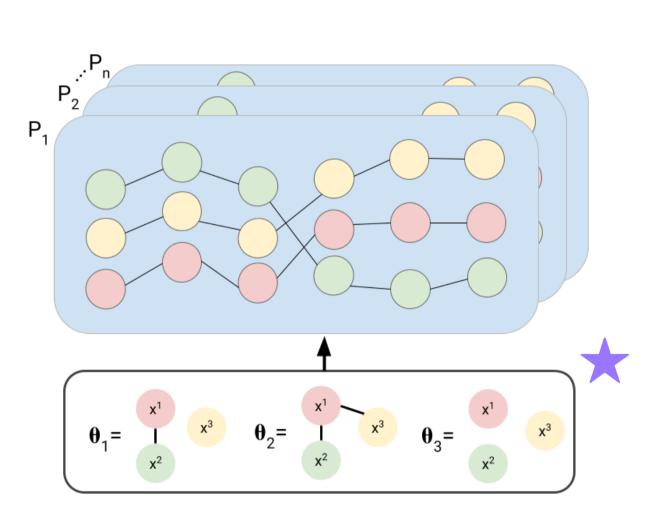
$$z_{p,1}|\pi_p)\prod_{n=2}^{N_p} [p(z_{pn}|z_{p,n-1},A_p)]\prod_{n=1}^{N_p}\prod_{k=1}^K \mathcal{N}(x_{pn}|\mu_{pk},\theta_k^{-1})^{z_{pnk}}\right)$$

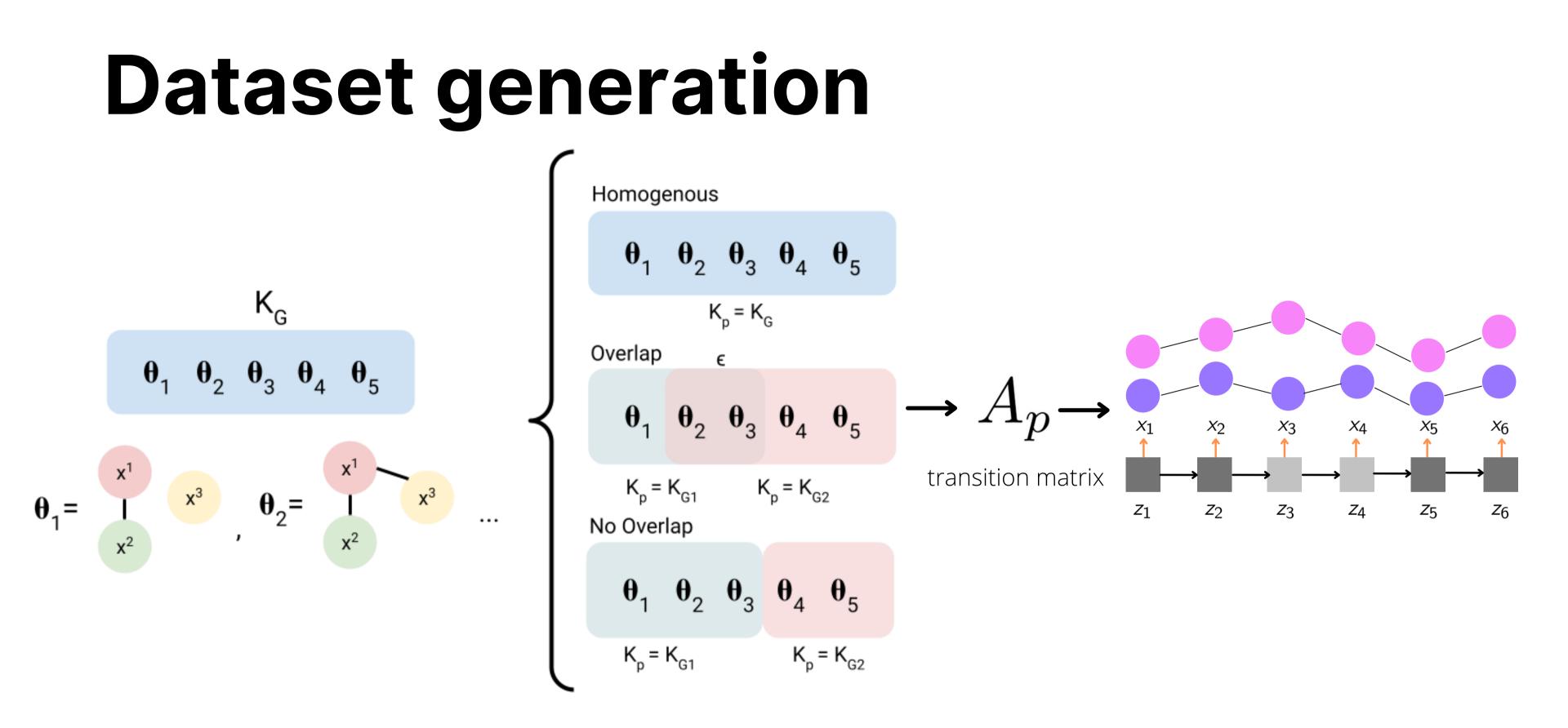
Our Contributions

Shared set of global states for all timeseries that is jointly optimized

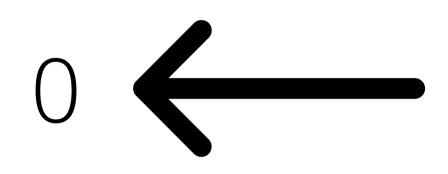
States are interpretable with respect to underlying biological processes

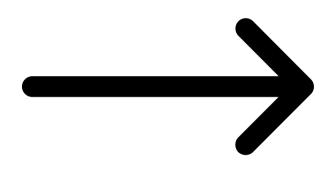
State visitation can be comparable across patients





Overlap parameter epsilon





No overlapHomogenousDistinct sub-populationsNo sub-population structure

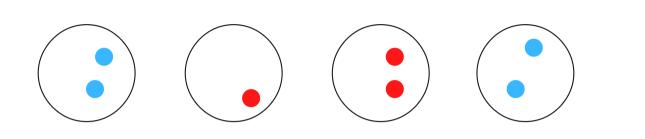
We tested our model's performance by simulating a variety of population structure settings: epsilon = [0, 0.2, 0.4, 0.6, 0.8, 1]

Homogenous

 $\boldsymbol{\theta}_1 \quad \boldsymbol{\theta}_2 \quad \boldsymbol{\theta}_3 \quad \boldsymbol{\theta}_4 \quad \boldsymbol{\theta}_5$ $K_p = K_g$ No Overlap $\theta_1 \quad \theta_2 \quad \theta_3 \quad \theta_4 \quad \theta_5$ K_p = K_{G1} $K_p = K_{G2}$ Overlap e $\boldsymbol{\theta}_1 \quad \boldsymbol{\theta}_2 \quad \boldsymbol{\theta}_3 \quad \boldsymbol{\theta}_4 \quad \boldsymbol{\theta}_5$ $K_p = K_{G1}$ $K_p = K_{G2}$

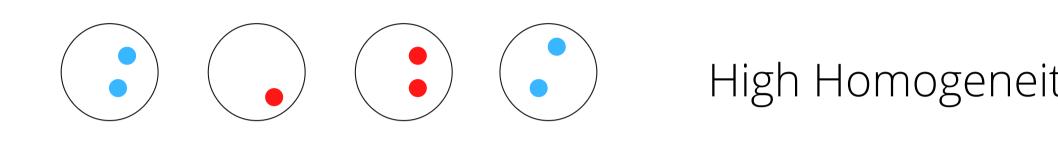
V-Measure

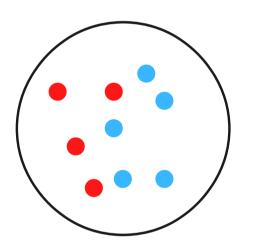
V-Measure



High Homogeneity, Low Completeness

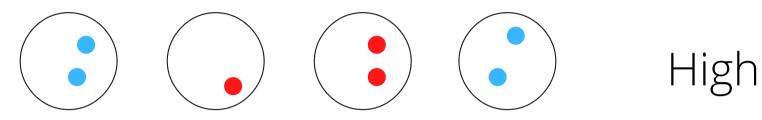
V-Measure



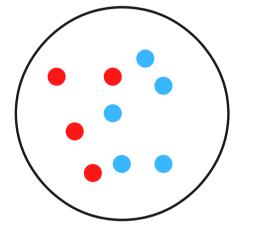


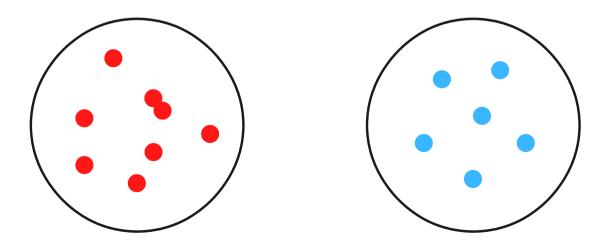
High Homogeneity, Low Completeness

High Completeness, Low Homogeneity



High Homogeneity, Low Completeness

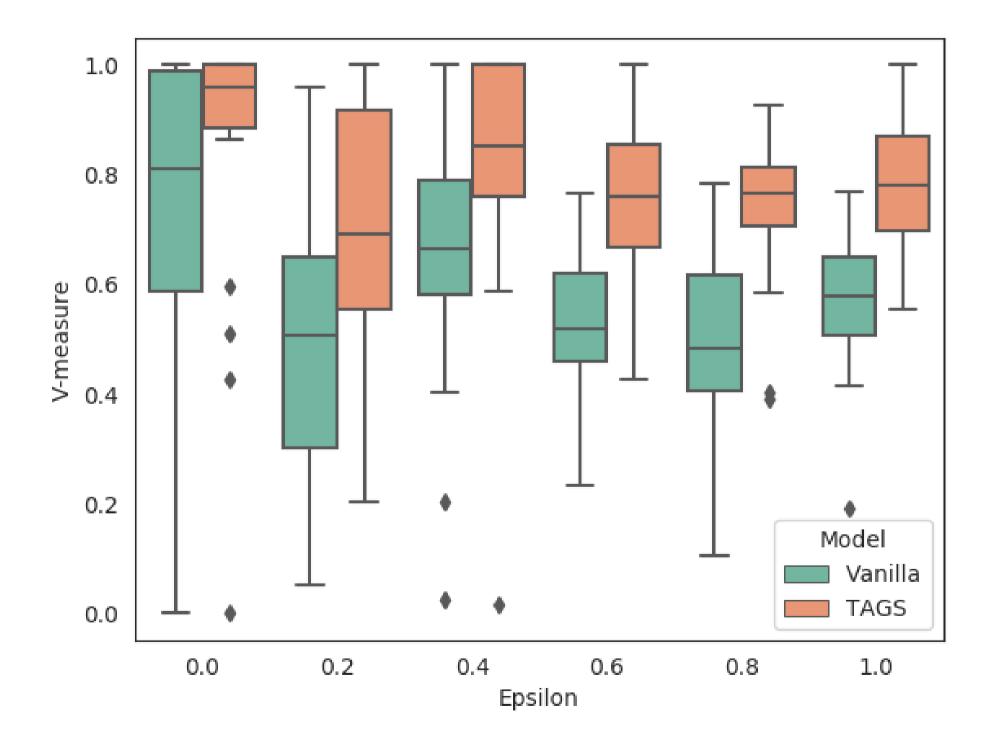




V-Measure: harmonic mean between completeness and homogeneity

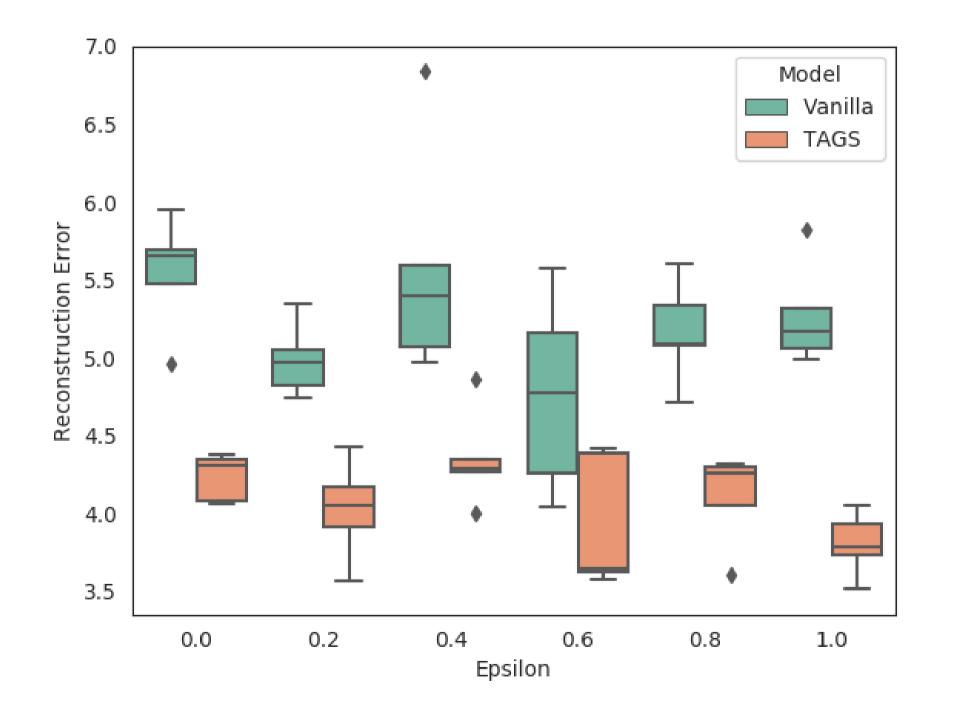
High Completeness, Low Homogeneity

State Clustering Performance



*Higher is better 1= perfect clustering

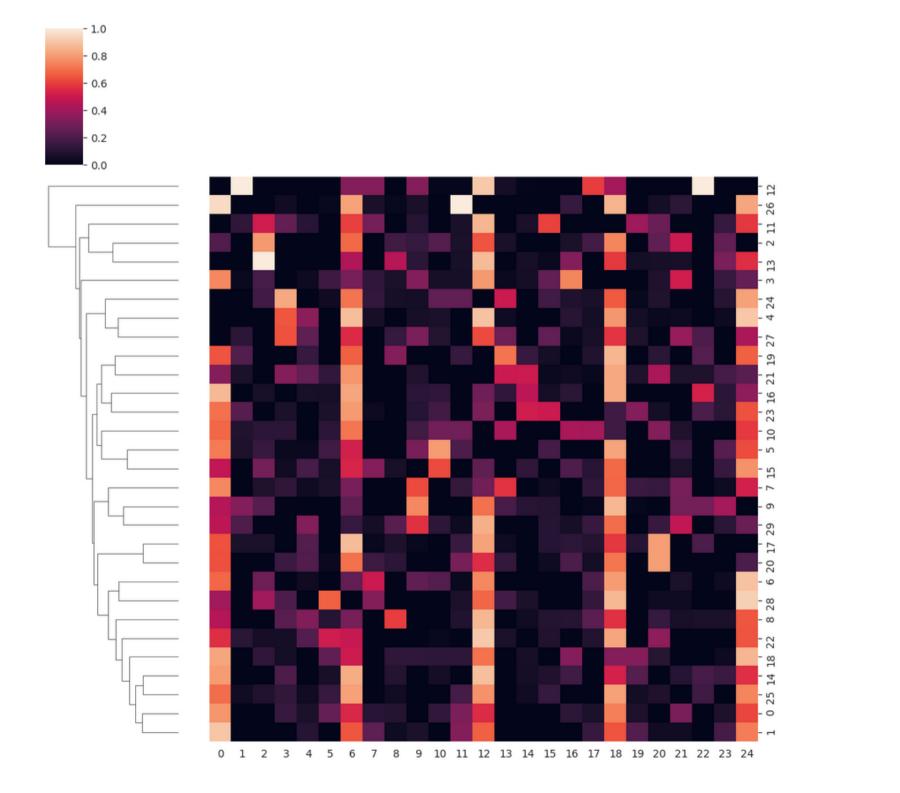
State Reconstruction



Reconstruction Error: Euclidean distance between predicted graph and true graph

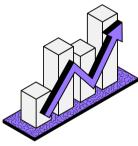
*Lower is better

Transition Probability clustering



Our model makes it possible to compare state visitation across individuals (not possible without global state information)

Key Findings



Limitations

- Feature missingness is not handled.
- We still have to specify the number of states locally and globally (hyperparameter).
- Did not test robustness against a misspecified number of states. Not flexible to unseen states (fixed K limits predictive power). • Assumes that sharing state information across patients is useful. This may not
- be true in all settings.
 - The performance gain is probably higher in a large-population regime. 0

Next Steps

- Finish running on real-world data State detection from wearables - human activity recognition
- Recreating the global subgroups given the state assignments
- More complex graph clustering techniques
- Hierarchical state definitions (baseline global + individual variation)

Do you have any questions?

Goal: Learn parameters $\theta \ \mu_p, \pi_p, A_p$ Posterior: $\prod_{p=1}^{P} \left(p(z_{p,1}|\pi_p) \prod_{n=2}^{N_p} [p(z_{pn}|z_{p,n-1}, A_p)] \prod_{n=1}^{N_p} \prod_{k=1}^{K} \mathcal{N}(x_{pn}|\mu_{pk}, \theta_k^{-1})^{z_{pnk}} \right)$

E-Step: update state assignments given observed data

M-step (i): Update all individual's private parameters

M-step (ii): Update all globally shared population parameters via Graphical Lasso

Goal: Learn parameters $\theta \mu_p, \pi_p, A_p$

E-Step: update state assignments given observed data

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \theta_{\text{old}})$$
$$\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \theta_{\text{old}})$$

M-step (i): Update all individual's private parameters

M-step (ii): Update all globally shared population parameters via **Graphical Lasso**

Goal: Learn parameters $\theta \mu_p, \pi_p, A_p$

E-Step: update state assignments given observed data

M-step (i): Update all individual's private parameters

$$A_{j,k} = \frac{\sum_{n=2}^{N} \xi(z_{n-1,j}, z_{n,k})}{\sum_{l=1}^{K} \sum_{n=2}^{N} \xi(z_{n-1,j}, z_{n,l})} \qquad \mu_k = \frac{\sum_{l=1}^{K} \xi(z_{n-1,j}, z_{n,l})}{\sum_{l=1}^{K} \sum_{n=2}^{N} \xi(z_{n-1,j}, z_{n,l})}$$

M-step (ii): Update all globally shared population parameters via **Graphical Lasso**

 $\frac{\sum_{n=1}^{N} \gamma(z_{n,k}) \mathbf{x}_n}{\sum_{n=1}^{N} \gamma(z_{n,k})}$

Goal: Learn parameters $\theta \ \mu_{p}, \pi_{p}, A_{p}$

E-Step: update state assignments given observed data

M-step (i): Update all individual's private parameters

M-step (ii): Update all globally shared population parameters via **Graphical Lasso**

> $\Theta_k = \operatorname{argmin} tr(\Theta S_k) - \log \det(\Theta) + \lambda ||\Theta||_{1,od}$ $\Theta > 0$

$$S_{k} = \frac{1}{\sum_{p=1}^{P} \sum_{n=1}^{N_{p}} z_{pnk}} \sum_{p=1}^{P} \sum_{n=1}^{N_{p}} z_{pnk} (x_{pn} - \hat{\mu}_{k}) (x_{pn} - \hat{\mu}_{pk})^{T} \quad \hat{\mu}_{k} = \frac{1}{\sum_{p=1}^{P} \sum_{n=1}^{N_{p}} z_{pnk} (x_{pn} - \hat{\mu}_{pk}) (x_{pn} - \hat{\mu}_{pk})^{T}}$$

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008

