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Motivation

Efficiently summarize high-dimensional relationships with sparse graphical structure
Strong physiological grounding - relationship between features more important than the raw
feature values
Interpretable - state visitation can be directly compared within individuals

One approach: define physiological states based on signal correlations (Tozzo et al. 2021)

Don't have ground truth for underlying population structure
Can be hard to compare across individuals

Unsupervised state detection is a general challenge in heathcare data 



Wearables collect high-dimensional and high-resolution timeseries data
Stress is latent and difficult to measure

We don't have good labels in the wild
We don't fully understand how it manifests

Problem Setting - Stress



Problem Setting - Stress
Wearables collect high-dimensional and high-resolution timeseries data
Stress is latent and difficult to measure

We don't have good labels in the wild
We don't fully understand how it manifests

Stress might look different for different people
Overarching question: are there subtypes (or archetypes) of stress

State change can be volatile
Stress is it's own disease process - but also may impact other diseases

State Space Models for clustering are needed



Motivating Example
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Local States



Motivating Example

Global States



Motivating Example
Sharing global

information about states
between individuals

may give us insight into
population structure 

What states some or all individuals
pass through?
Are there sub-populations within
characteristic state visitation
behaviours?
Is there heterogeneity within a
given state across individuals?



Timeseries is modelled as HMM
Transition probability
Emission probabilities

Features are modeled as multivariate
normal, parameterized according to
the state assignment



State Definitions

Each state is defined by conditional
dependencies between features
Edge in graph corresponds to >0
covariance
Physiological grounding - each patient
may have their own baseline feature
value

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008
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Inidividual parameters 

Model posterior:

Goal: Learn parameters
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EM for HMMs
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EM for HMMs

E-step: Assign each timepoint 
to a state (via maximum likelihood)

M-step: Update how each state is defined
(based on all the timepoints assigned to them) 

States are clustered during training



Shared set of global states for all time-
series that is jointly optimized

States are interpretable with respect to
underlying biological processes

State visitation can be comparable
across patients

Our Contributions
TAGS 



Dataset generation

transition matrix



Overlap parameter epsilon

0 1

Homogenous
No sub-population structure

No overlap
Distinct sub-populations

We tested our model's performance by simulating a variety of population
structure settings: epsilon = [0, 0.2, 0.4, 0.6, 0.8, 1]



V-Measure



V-Measure

High Homogeneity, Low Completeness 



V-Measure

High Completeness, Low Homogeneity

High Homogeneity, Low Completeness 



V-Measure

V-Measure: harmonic mean between
completeness and homogeneity 

High Completeness, Low Homogeneity

High Homogeneity, Low Completeness 



State Clustering Performance

 *Higher is better
1= perfect clustering






State Reconstruction

Reconstruction Error: Euclidean
distance between predicted graph

and true graph 



*Lower is better



Transition Probability clustering

Our model makes it possible to compare
state visitation across individuals (not

possible without global state information)



TAGS has better clustering performance

Improved state reconstructions

Interpretable!

Faster! 🏃‍♂️🏃‍♂️🏃‍♂️

Key Findings



Limitations
Feature missingness is not handled.
We still have to specify the number of states locally and globally
(hyperparameter).

Did not test robustness against a misspecified number of states.
Not flexible to unseen states (fixed K limits predictive power).

Assumes that sharing state information across patients is useful. This may not
be true in all settings. 

 The performance gain is probably higher in a large-population regime.



Finish running on real-world data
State detection from wearables - human activity recognition

Recreating the global subgroups given the state assignments
More complex graph clustering techniques
Hierarchical state definitions (baseline global + individual variation)

Next Steps



Do you have any questions?



Goal: Learn parameters

Posterior:

E-Step: update state assignments given observed data

M-step (i): Update all individual's private parameters 

M-step (ii): Update all globally shared population parameters via
Graphical Lasso

Modified Baum-Welch (Variant of EM algorithm for HMMs)
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Modified Baum-Welch (Variant of EM algorithm for HMMs)
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Goal: Learn parameters

E-Step: update state assignments given observed data

M-step (i): Update all individual's private parameters 

M-step (ii): Update all globally shared population parameters via
Graphical Lasso


