The role of machine learning in clinical research: transforming the future of evidence generation

Yuxiao (Shawn) Sun Yuyi (Taylor) Ding

Improved Computing Resources

Data Availability

Background

Preclinical drug discovery and development research

Clinical trial participant management

Data collection and management

Barriers

CONTENTS

Preclinical drug discovery and development research

2.1 Target drug discovery

Analysis existing research

Generate molecules

Different drug performance

2.1 Target drug discovery

▷ Obsessive-compulsive disorder (OCD) drug^[1]

O 1/3 cost

- O 12 months vs. 5 years
- O 350 compounds vs. 2500 compounds

 \triangleright Maximizing the success and efficiency of trials

Planning phase

Optimize the choice of treatment regimens

Reinforcement Learning for clinical trials in nonsmall cell lung cancer(NSCLC)^[1]

Discover optimal treatment

Q – learning framework^[2]

[1]: Zhao Y, Zeng D, Socinski MA, Kosorok MR. Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics. 2011; 67(4):1422–33. https://doi.org/10.1111/j.1541-0420.2011.01572.x.

[2]: Watkins, C. J. C. H. (1989). Learning From Delayed Rewards. Ph.D. Thesis, King's College, Cambridge, U.K.

▷ Treatment plan and therapy options^[1]

[1]: Socinski, M. A. and Stinchcombe, T. E. (2007). Duration of first-line chemotherapy in advanced nonsmall-cell lung cancer: Less is more in the era of effective subsequent therapies. Journal of Clinical Oncology 25, 5155–5157.

▷ Primary goal

Optimal Compounds

Optimal time to initiate 2nd – line therapy

▷ In the clinical setting – Q-learning

 \triangleright Q - learning

$$Q_t(s_t, a_t) = E \left[R_t + \max_{a_{t+1}} Q_{t+1}(S_{t+1}, a_{t+1}) \right| S_t$$

= $s_t, A_t = a_t$].

Peer review

▷ Limitations

Assumption : Survive $\rightarrow 2^{nd}$ – line therapy

Conceptual Promise

The role of ML in clinical trial participant management

15

3.1 Selection of patient populations for investigation

Decrease sample size

Identify patterns in patient features

3.1 Selection of patient populations for investigation

Electronic health record (EHR) and genetic data identified three different subtypes of type 2 diabetes^[1]

[1]: Li L, Cheng WY, Glicksberg BS, Gottesman O, Tamler R, Chen R, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Fei Transl Med. 2015;7(311):311ra174

3.1 Selection of patient populations for investigation

PITFALLS

- Lack negative data
- Limited drug usage
- Missing subgroups

3.2 Participant monitoring

1. IDENTIFICATION

2. DATA ANALYSIS

3. DECREASE STUDY BURDENS

Data collection and management

20

4.1 Wearable and other smart devices

Supplement or even replace study visits

Large and complex data

Ethical and privacy

4.1 Wearable and other smart devices

Depression Screening from Voice Samples of Patients Affected by Parkinson's Disease^[1]

[1]: Ozkanca Y, Ozturk MG, Ekmekci MN, Atkins DC, Demiroglu C, Ghomi RH. Depression screening from voice samples of patients affected by Parkinson's disease. Digit Biomark. 2019;3(2):72–82. https://doi.org/10.1159/000500354.

4.2 Data collection and missing data

1. Automate

Case report forms

2. Impute

Covariate values

3. Average

Distribution

Barriers to the integration of ML techniques in clinical research

24

5.1 Operational barriers

Assemble a group

Building models

┛

Algorithm development and validation

5.2 Philosophical barriers

- \triangleright Explainability
 - O Attention scores

- \triangleright Trustworthiness
 - O Clinical medicine that is not well understood continue to be used

6. Conclusion

- 1. Not Evaluated in peer-reviewed manner
- 2. Distort clinical reality
- 3. Bias (Ethical, socioeconomic ...)
- 4. Preclinical rather than clinical trial planning
- 5. High requirement for data structures and algorithms

We also hope that ML in clinical research is applied in a fair, ethical, and open manner that is acceptable to all.

Questions?