# Disease-Atlas: Navigating Disease Trajectories using Deep Learning

Bryan Lim & Mihaela van der Schaar (2018)



Presented by Yang Qu & Qingyang Yu

## Agenda

- Background
- Related Work & Problem
- Model
- Dataset
- Evaluation & Results
- Discussion

## Background

- Rich literature in Machine Learning models focusing on short-term predictions
- E.g., use data collected from in-hospital patients to predict the ICU admission
- Patient with chronic diseases are followed up over the span of years
- Additional comorbidities can in turn affect key biomarkers
- Increasing demand for jointly forecasting biomarker trajectories, comorbidity, and survival probability

#### **Related Work + Problem**

- Joint models in longitudinal studies
  - o Standard joint model deals with high dimensional dataset
  - O Gaussian process (GP) incorporation with patient covariates is too simple
- Deep learning in traditional survival analysis
  - Fail to have dynamic prediction over time
  - Lack of uncertainty estimate

# Disease-Atlas Network Architecture



 $X_t$ : external covariates at time t  $V_t$ : longitudinal measuremnt at time t  $\delta_t$ : event occurrences at time t  $m_{t-1}$ : memory state at time t-1  $m_t$ : memory state at time t  $h_t$ : output at time t

## Shared Temporal Layer

- Goal: Learn correlation between variables
- Input: Longitudinal data, Event Occurrence; Covariates; Memory state
- Activation Function: Exponential Linear Unit (ELU)
- Monte Carlo (MC) Dropout: Regularization & Uncertainty Prediction



![](_page_5_Figure_7.jpeg)

## **Task-specific Layer**

• Goal: Learn shared representations between related trajectories

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

![](_page_7_Figure_0.jpeg)

## **Multitask Learning**

• Better Survival Representations

![](_page_8_Figure_2.jpeg)

- Handling Irregularly Sampled Data:
- Definition: Some data collected in consistent frequency, others not
- With Multitask: Improving the prediction accuracy without relying too much on the choice of imputation

### **Forecasting Disease Trajectories - Dynamic Prediction**

• Estimation of the expected values of longitudinal variables and survival probabilities

• Uncertainty estimates with Monte-Carlo dropout approach

![](_page_9_Figure_3.jpeg)

## **UK Cystic Fibrosis (CF) Registry Dataset**

|               |                        | Type           | % Patients |
|---------------|------------------------|----------------|------------|
| Event         | Death                  | Binary (Event) | 4.70%      |
| Biomarkers    | FEV1                   | Continuous     | 100.00%    |
|               | Predicted FEV1         | Continuous     | 100.00%    |
| Comorbidities | Liver Disease          | Binary         | 20.80%     |
|               | Asthma                 | Binary         | 22.96%     |
|               | Arthropathy            | Binary         | 9.50%      |
|               | Bone fracture          | Binary         | 1.94%      |
|               | Raised Liver Enzymes   | Binary         | 23.91%     |
|               | Osteopenia             | Binary         | 20.37%     |
|               | Osteoporosis           | Binary         | 9.58%      |
|               | Hypertension           | Binary         | 3.30%      |
|               | Diabetes               | Binary         | 24.56%     |
| Bacterial     | Burkholderia Cepacia   | Binary         | 5.59%      |
| Infections    | Pseudomonas Aeruginosa | Binary         | 65.18%     |
|               | Haemophilus Influenza  | Binary         | 30.55%     |
|               | Aspergillus            | Binary         | 29.29%     |
|               | NTM                    | Binary         | 6.38%      |
|               | Ecoli                  | Binary         | 5.32%      |
|               | Klebsiella Pneumoniae  | Binary         | 4.93%      |
|               | Gram-Negative          | Binary         | 3.78%      |
|               | Xanthomonas            | Binary         | 13.18%     |
|               | Staphylococcus Aureus  | Binary         | 52.59%     |
|               | ALĈĂ                   | Binary         | 5.06%      |

- 10,980 CF patients
- annual follow ups between 2008-2015
- a total of 87 variables associated with each patient across all years
- Interests lies in:
- 2 continuous lung function scores (FEV1 and Predicted FEV1)
- 20 binary longitudinal variables of comorbidity and infection
- death as the event of interest
- Training/Validation/Test split: 60%-20%-20%

#### Multi-task Learning with Irregular Sampling

• The removal probability, gamma, is the probability that all data points are removed across each tasks at one time step.

![](_page_11_Figure_2.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_11_Figure_4.jpeg)

(c) Mortality AUROC

#### **Evaluation - Mortality Prediction**

|        | $\mid \tau \mid$                       | DA-LSTM                                      | DA-NN                                      | LSTM                                               | MLP                                                                                                        | L                | $\mathbf{J}\mathbf{M}$                        |
|--------|----------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------|
| AUROC  | $\begin{vmatrix} 1 \\ 0 \end{vmatrix}$ | $0.944(\pm 0.0004)$                          | $0.943(\pm 0.0003)$                        | $0.943(\pm 0.0007)$                                | $0.941(\pm 0.0003)$                                                                                        | 0.824            | 0.870                                         |
|        | $\begin{vmatrix} 2\\ 3 \end{vmatrix}$  | $0.924(\pm 0.0008) \ 0.910(\pm 0.0003)$      | $0.923(\pm 0.0005)$<br>$0.905(\pm 0.0002)$ | $0.923(\pm 0.0005)$<br>$0.908(\pm 0.0002)$         | $0.919(\pm 0.0003)$<br>$0.907(\pm 0.0002)$                                                                 | $0.812 \\ 0.825$ | $\begin{array}{c} 0.870 \\ 0.851 \end{array}$ |
|        | 45                                     | $0.905(\pm 0.0003)$<br>$0.895(\pm 0.0003)$   | $0.902(\pm 0.0008)$<br>$0.892(\pm 0.0005)$ | $0.904(\pm 0.0003)$<br>$0.894(\pm 0.0005)$         | $0.904(\pm 0.0006)$<br>$0.888(\pm 0.0007)$                                                                 | 0.776<br>0.765   | 0.828<br>0.806                                |
| AUPRC  |                                        | $0.278 (\pm 0.0037)$                         | $0.238 (\pm 0.0040)$                       | $0.230 (\pm 0.0000)$                               | $0.219 (\pm 0.0036)$                                                                                       | 0.161            | 0.000                                         |
| Acrite | $\begin{vmatrix} 1\\2 \end{vmatrix}$   | $0.193 (\pm 0.0014)$                         | $0.169 (\pm 0.0033)$                       | $0.165 (\pm 0.0017)$                               | $0.186 (\pm 0.0036)$                                                                                       | 0.082            | 0.092                                         |
|        | $\begin{vmatrix} 3 \\ 4 \end{vmatrix}$ | $0.103 (\pm 0.0005)$<br>$0.109 (\pm 0.0007)$ | $0.092 (\pm 0.0007) \\ 0.101 (\pm 0.0014)$ | $0.099 \ (\pm \ 0.0028) \\ 0.095 \ (\pm \ 0.0010)$ | $\begin{array}{c} \textbf{0.105} \ (\pm \ \textbf{0.0001}) \\ 0.102 \ (\pm \ \textbf{0.0006}) \end{array}$ | $0.085 \\ 0.062$ | $0.089 \\ 0.068$                              |
|        | 5                                      | $0.101 (\pm 0.0007)$                         | $0.091 (\pm 0.0008)$                       | $0.093 (\pm 0.0017)$                               | $0.100 (\pm 0.0017)$                                                                                       | 0.058            | 0.059                                         |
|        |                                        |                                              |                                            |                                                    |                                                                                                            |                  |                                               |

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

$$Precision = \frac{TP}{TP+FP}$$

$$Recall = \frac{TP}{TP + FN}$$

#### **Evaluation - Longitudinal Variables Prediction**

|         | $\mid \tau$ | FEV1                                                                       | MSE<br>Pred. FEV1                         | AUROC [M<br>Comorbidities                                                                                                                                  | $\frac{1}{1} \frac{1}{1} \frac{1}$ | AUPRC [M<br>Comorbidities                                                                                                                                        | $[ean \pm SD]$<br>Infections                                                                                                                                     |
|---------|-------------|----------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DA-LSTM | 1 2 3 4 5   | $\begin{array}{c c} 0.182 \\ 0.191 \\ 0.275 \\ 0.374 \\ 0.461 \end{array}$ | 121.3<br>139.4<br>191.3<br>254.4<br>308.1 | $\begin{array}{c c} 0.957 \ (\pm \ 0.025) \\ 0.926 \ (\pm 0.047) \\ 0.882 \ (\pm 0.048) \\ 0.817 \ (\pm 0.085) \\ 0.790 \ (\pm 0.067) \end{array}$         | $\begin{array}{c} 0.888 \ (\pm \ 0.056) \\ 0.850 \ (\pm \ 0.044) \\ 0.798 \ (\pm \ 0.057) \\ 0.723 \ (\pm \ 0.068) \\ 0.669 \ (\pm \ 0.126) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.680 \; (\pm 0.261) \\ 0.648 \; (\pm \; 0.244) \\ 0.555 \; (\pm \; 0.213) \\ 0.459 \; (\pm \; 0.184) \\ 0.388 \; (\pm \; 0.169) \end{array}$  | $\begin{array}{c} 0.416 \ (\pm 0.247) \\ 0.337 \ (\pm \ 0.261) \\ 0.337 \ (\pm \ 0.261) \\ 0.309 \ (\pm \ 0.252) \\ 0.269 \ (\pm \ 0.247) \end{array}$           |
| JM      | 1 2 3 4 5   | $\begin{array}{c} 0.553 \\ 0.593 \\ 0.641 \\ 0.695 \\ 0.750 \end{array}$   | 368.6<br>411.1<br>451.8<br>490.1<br>519.7 | $ \begin{array}{c} 0.699 \ (\pm \ 0.148) \\ 0.694 \ (\pm \ 0.139) \\ 0.685 \ (\pm \ 0.140) \\ 0.681 \ (\pm \ 0.132) \\ 0.673 \ (\pm \ 0.130) \end{array} $ | $\begin{array}{c} 0.673 \ (\pm \ 0.069) \\ 0.651 \ (\pm \ 0.060) \\ 0.631 \ (\pm \ 0.072) \\ 0.607 \ (\pm \ 0.077) \\ 0.580 \ (\pm \ 0.082) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.176 \ (\pm \ 0.088) \\ 0.180 \ (\ \pm \ 0.089) \\ 0.185 \ (\ \pm \ 0.090) \\ 0.187 \ (\ \pm \ 0.091) \\ 0.188 \ (\ \pm \ 0.093) \end{array}$ | $\begin{array}{c} 0.161 \ (\pm \ 0.176) \\ 0.157 \ (\ \pm \ 0.181) \\ 0.160 \ (\ \pm \ 0.186) \\ 0.159 \ (\ \pm \ 0.188) \\ 0.155 \ (\ \pm \ 0.186) \end{array}$ |

#### Discussion

Strengths:

- Handle high dimensional data
- Complex interaction between variables
- Uncertainty estimates
- Robustness to Irregular Sampling via Multitask Learning

Limitations:

- Imbalanced data: Resamping; Changing weight of loss function
- Many hyperparameters to tune (3600):
- Grid Search vs Random Search: Tradeoff between accuracy & computational efficiency
- Choice of activation function

#### Questions