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Outline 

- Previous works lead to U-Net
- Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images, 

Ciresan et al, 2012
- Fully Convolutional Networks for Semantic Segmentation, Long et al, 2014

- U-Net Architecture
- Training Strategies
- Results
- U-Net Variations
- Summary and Limitations
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Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy 
Images, Ciresan et al, 2012

Sliding Window Setup

- Advantage: 
- Improve localization
- Increase number of data training

- Drawbacks: 
- slow to run 
- Redundancy due to overlap (a)
- Tradeoff on localization and use of context (b)

3Sample slice of a dataset, Figure 5, 
Ciresan et al, 2012
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Fully Convolutional Networks for Semantic Segmentation, Long et al, 2014

- Architecture:
- Capable of being trained on arbitrary size of input (no fully connected layer in network)
- Consists of Use upsampling / transposed convolution
- Skip connection

Encoder Decoder
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https://medium.com/@wilburdes/semantic-segmentation-using-fully-convolutional-neural-networks-86e45336f99b

Bottleneck



Transposed Convolution (Deconvolution/ Unpooling)
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Convolution (3*3 kernel) Transposed Conv (3*3 kernel)

https://towardsdatascience.com/intuitively-understanding-convolutio
ns-for-deep-learning-1f6f42faee1 https://datascience.stackexchange.com/questions/6107

/what-are-deconvolutional-layers



Skip Connections
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To go up from the bottleneck layer and construct the 
segmentation labels

Figure 4, Long et al, 2014

Figure 3, Long et al, 2014
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Skip Connection

Skip Connection

Skip Connection

Skip Connection

Number of feature 
channels per layer

Input size of 
each layer

Left half: Encoder
Right half: Decoder



8Figure 1, Ronneberger et al, 2015Figure 2, Ronneberger, et al, 2015

Skip Connection

Skip Connection
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Training strategy: Data Augmentation 

   Teach model invariance and robustness properties

Data augmentations applied on a Chest X-ray 
image

Microscopy Images: very less images in Unet paper

● Shift and rotation invariance
● Robustness to deformation and gray value variations
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Data Augmentation: Random Elastic Deformation

Elastic transformation on raw 
image

Elastic transformation on 
corresponding mask.
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Credit: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/


Other training strategies

i) Touching cells: pixel-wise weighted loss

ii) Favour larger input tiles over larger batch size

iii) Good weight initialization
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Segmentation mask: 
White(cells) and Black 

(background)

Loss weight for each 
pixel



Experimental Results: Segmentation of Neuronal Structures in EM stacks

            Dataset: EM Segmentation Challenge(ISBI 2012)

30 images (512x512 pixels) 

Transmission electron microscopy (TEM) of Drosophila first instar larva ventral nerve cord (VNC) 

  
 

Unet segmentation: cells 
(white) and membranes (black). 

Raw TEM 
sample image

Overlay of ground truth on raw 
image
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Challenges in the dataset
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Fuzzy membranes

Structures with 
very low 
contrast

Other 
structures

Raw image



Evaluation: EM stacks

Ranking in EM segmentation challenge, sorted by warping error

Penalizes topological 
disagreements, and used to 
compare the performance of  
boundary labellings
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IDSIA [1]: Sliding Window Convolution Network

Credit: https://imagej.net/plugins/tws/topology-preserving-warping-error

https://imagej.net/plugins/tws/topology-preserving-warping-error


Evaluation: EM stacks

Ranking in EM segmentation challenge, sorted by warping error

Penalizes connectivity errors

Compares segmentations in 
which regions are non- 
contiguous clusters of pixels
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Given 2 segmentations: S1 and S2 of 
image I with n pixels:

a =  number of pixel pairs in I that are in the same object in S1 as in same object of S2 ( same label)

b = number of pixel pairs in I that are in the different object in S1 as in different object of S2 ( different labels)



Evaluation: EM stacks

Ranking in EM segmentation challenge, sorted by warping error

Focuses of pixel level 
disagreement 

Measures pixel differences 
between the segmented and 
original image 
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Results: ISBI cell Tracking challenge (2014 and 2015)

Segmentation results - IOU 
(Intersection over union) on ISBI

   
● DIC-HeLa - 20 partially annotated training images (DIC - Differential Inference 

Contrast) microscope

● PhC-U373 - 35 partially annotated training images, phase contrast microscopy

   28



Limitations: U-Net’s variants
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a) Residual U-Net

● Residual networks are proposed to overcome the problem 

of Deep CNN’s (vanishing gradients)

● Residual U-Net borrows residual blocks from ResNet¹ paper 
● Train deeper networks, leading to faster convergence

[1]: https://arxiv.org/abs/1512.03385 30

https://arxiv.org/abs/1512.03385


b) Dense-Unet

Dense blocks instead of Conv blocks

Dense-UNet = UNet backbone + 2 modifications

a) Every layer  receives features from previous layers
b)  Identity maps combined with channel wise concatenation

DenseNet-Unet Architecture 31
DenseNet: https://arxiv.org/abs/1608.06993

https://arxiv.org/abs/1608.06993


Summary

- Unet makes accurate biomedical semantic segmentations feasible with 
few training examples

- Encoder captures context, while decoder helps in maintaining 
localization 

- (localization and use of context at same time)
- Fast inference (1s per image)
- Training strategies

- data augmentations
- pixel-wise weighted loss (seems to be key concepts to train network 

with few images)
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Limitations (addressed by other architectures):
- Residual Unet: Train larger models (skip connections) 

- Dense Unet: Every layer has contextual information, better segmentation accuracy 
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Limitations (Our point of view)

a) Determining the depth of the network apriori is difficult (ablation study was missing)

b) Data Augmentation: how to select the transformation that are suited for a given task?

c) Missing ablation studies for the pre-processing / post processing in EM stacks evaluation

d)  Why not dice loss for training the network?
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Thank You :)
Questions?!


