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Recall: Potential Outcomes

Potential Outcomes

For covariatesX and binary treatment T , potential outcomes Y0(x)
and Y1(x) are defined as

Yi(x) = E[Y |X = x, do(T = i)]

x

Yt

(a) Causal graph for treatment-effect

x

Y1Y0t

(b) Causal graph after replacing Y
with Y0 and Y1
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Recall: Average Treatment Effect

Average Treatment Effect (ATE)

ATE is the difference in mean potential outcomes, i.e.,

ATE ≜ Ex[Y1(x)]− Ex[Y0(x)]
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ATE with Selection Bias

Selection bias may occur when treatment and control groups are not
chosen randomly
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Individual Treatment Effect

Individual Treatment Effect (ITE)

Answers the question of how well does an individual x respond to
a treatment

ITE ≜ E[Y1|x]− E[Y0|x]
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Learning ITE
Learn m1(x) = Ŷ1(x) and m0(x) = Ŷ0(x) using supervised learning:

ˆITE = m1(x)−m0(x)

t=0 t=1

x

Y
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Learning ITE: Problems
▶ An individual x is either treated or not

▶ Observed data (factuals): (xi, ti, Yti)
▶ Counterfactuals: (xi, ti, Y1−ti)
▶ Need to know both to estimate ITE

t=0 t=1

?

?

x

Y

Figure: For each x, only one potential outcome is observed. One can use
similar samples to estimate the other.
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Learning ITE: Problems

▶ In observational datasets x and t may not be independant

t=0 t=1

x

Y

Figure: Induced selection bias from dependence between x and t
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Inverse Propensity Score Weighting
Turn observational data into pseudo-randomized trial data by
re-weighting samples1

t=0 t=1

x

Y
t=0 t=1

x

Y

P(T X)

x

Yt

P(T X)

P(T X)
=1

x

Yt

▶ Need to estimate P (T |X), which is difficult for high-dim X

▶ Small P (T |X) creates large variance

▶ Works primarily for ATE

1Austin, 2011.
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Unbiased Representation Learning

Learning a representation of data that removes the treatment bias2

pt=0(x)

pt=1(x)

x1

x2

pϕt=0(x)

pϕt=1(x)

ϕ(x)1

ϕ(x)2

Figure: A 2D example of unbiased representation learning. Different colored
dots represent treatment groups. (Left) shows sample locations in original
feature space (Right) shows a possible unbiased representation encoded by
some function ϕ

2Johansson, Shalit, and Sontag, 2016.
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Neural network architecture for ITE estimation
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Figure: Neural network architecture for ITE estimation. L is a loss function,
IPM is an integral probability metric. Note that only one of h0 and h1 is
updated for each sample during training3.

3Shalit, Johansson, and Sontag, 2016.
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Integral Probability Metric (IPM) Regularizer

𝑡

𝑥
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𝑖𝑓	  𝑡 = 1

An IPM is a distance function between distributionsa

▶ Minimizing the IPM between treatment groups encourages
an unbiased representation

aSriperumbudur et al., 2012.
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Integral Probability Metric (IPM) Regularizer
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Definition: IPMG

IPMG (p1, p2) = sup
g∈C

∣∣∣∣∫
s

g(s) (p1(s)− p2(s)) ds

∣∣∣∣
G is some family of functions which defines the metric.
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Possible Metrics

For IPMG to be a valid metric we must use a sufficiently diverse family
of functions G s.t

1. IPMG(p, q) = 0 ⇔ p = q identity of indiscernibles
2. IPMG(p, q) = IPMG(q, p) symmetry
3. IPMG(p, q) ≤ IPMG(p, r) + IPMG(r, q) triangle inequality

It is know that:

▶ G := { family of 1-Lipschitz functions} then IPMG becomes the
Wasserstein metric (earth movers distance)

▶ G := { any reproducing kernel Hilbert space with bounded norm }
then IPMG becomes the Maximum Mean Discrepancy (MMD)
metric

Authors experiment with both Wasserstein and MMD as candidate
metrics
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Error Bounds
Error in ITE Estimation:

ϵITE = Ep(x)

[
( ˆITE(x)− ITE(x))2

]
Problem: The true ITE is not known in real-world datasets

All we know are factual errors

ϵtF =Ep(x)[(Yt(x)− Ŷt(x))
2]

But not counterfactual errors

ϵtCF =Ep(x)[(Y1−t(x)− Ŷ1−t(x))
2]

Factual Error Bound (Shalit et al.)

ϵITE︸︷︷︸
Effect error

≤ ϵF+ϵCF ≤ 2 (ϵt=0
F + ϵt=1

F )︸ ︷︷ ︸
Prediction error

+αIPMG

(
pt=1, pt=0

)︸ ︷︷ ︸
Treatment/control distance

Loss
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2]

Factual Error Bound (Shalit et al.)

ϵITE︸︷︷︸
Effect error

≤ ϵF+ϵCF ≤ 2 (ϵt=0
F + ϵt=1

F )︸ ︷︷ ︸
Prediction error

+αIPMG

(
pt=1, pt=0

)︸ ︷︷ ︸
Treatment/control distance

Loss



15/18

Causality and Treatment Effect Existing Approaches Proposed Method Evaluations Implications & Limitations References

ITE Evaluation

▶ No ground truth: Y0 and Y1 are never observed for the same x

▶ Use synthetic data, where structural equations are known

▶ Real-world data + randomized controlled trial

◦ Still no ground truth

◦ Evaluate the risk of induced policy πf (x) = I(f(x, 1)− f(x, 0) > λ)
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ITE Evaluation: IHDP
▶ Dataset: Semi-synthetic IHDP4

▶ Real-world features and treatment

▶ Synthetic outcome

Out-of-sample
IHDP

ϵITE ϵATE

OLS/LR-1 5.8± .3 .94± .06
OLS/LR-2 2.5± .1 .31± .02
BLR 5.8± .3 .93± .05
k-NN 4.1± .2 .79± .05
BART 2.3± .1 .34± .02
Rand.For. 6.6± .3 .96± .06
Caus.For. 3.8± .2 .40± .03
BNN 2.1± .1 .42± .03
TarNet .95± .0 .28± .01
CFR MMD .78± .0 .31± .01
CFR Wass .76± .0 .27± .01

Table: Results on IHDP. Lower is
better.
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Figure: Out-of-sample ITE error versus
IPM regularization for CFR Wass, with
high (q = 1), medium and low
(artificial) imbalance between control
and treated.

4Hill, 2011.
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ITE Evaluation: Balanced Representation

(a) Original dataset (b) Wasserstein regularizer

Figure: t-SNE visualizations of the balanced representations of IHDP learned by
the algorithm. Blue (orange) points represent control (treatment) group.
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Implications

+ state of the art method for estimating ITE from observational data;
can use general functions to estimate Y0 and Y1

+ Useful for discovering new outcomes. For example:

◦ Is a drug intended for cancer patients useful for treating alzheimer’s
patients?

+ Provides the first generalization-error bound for the expected ITE
estimation error; useful for developing further theory

Limitations

- Assumes no hidden confounding variables

- No results on tightness of bound

◦ Does minimizing the bound always results in smaller error?

- Generalization to continuous treatments is not obvious
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