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Recall: Potential Outcomes

Potential Outcomes

For covariates X and binary treatment T, potential outcomes Yy ()
and Y; (z) are defined as

Yi(2) = E[Y]X =z, do(T = )]

f PHOBROERCO

(a) Causal graph for treatment-effect (b) Causal graph after replacing Y’
with Yy and Y7
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Recall: Average Treatment Effect

Average Treatment Effect (ATE)

ATE is the difference in mean potential outcomes, i.e.,

ATE £ E,[V1(z)] — E.[Yo ()]
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ATE with Selection Bias

Selection bias may occur when treatment and control groups are not
chosen randomly
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Individual Treatment Effect

Individual Treatment Effect (ITE)

Answers the question of how well does an individual z respond to
a treatment

ITE £ E[Y1|z] — E[Yo|z]

----- t=0 t=1
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Learning ITE )

Learn my () = Y1(z) and mo(z) = Yo(x) using supervised learning:

ITE = my(z) — mo(x)

-------
o =
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Learning ITE: Problems

» An individual x is either treated or not
» Observed data (factuals): (x;,t;,Y%;)
» Counterfactuals: (z;,t;,Y1_¢,)

» Need to know both to estimate ITE
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Learning ITE: Problems

» An individual x is either treated or not
» Observed data (factuals): (x;,t;,Y%;)
» Counterfactuals: (z;,t;,Y1_¢,)

» Need to know both to estimate ITE
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Figure: For each x, only one potential outcome is observed. One can use
similar samples to estimate the other.
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Learning ITE: Problems

» In observational datasets x and ¢ may not be independant

Figure: Induced selection bias from dependence between = and ¢
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Inverse Propensity Score Weighting

Turn observational data into pseudo-randomized trial data by
re-weighting samples?

S =0 el e t=0 - t=l

P(T|X)
=1

P(T|X) TN

1Austin, 2011.

Limitations
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[ 1e]

Inverse Propensity Score Weighting

Turn observational data into pseudo-randomized trial data by
re-weighting samples?

P(T|X)
=1

P(T|X) TN

» Need to estimate P(T|X), which is difficult for high-dim X
» Small P(T'|X) creates large variance

» Works primarily for ATE
IAustin, 2011.
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Unbiased Representation Learning

Learning a representation of data that removes the treatment bias?

d(x)2 2

x1 $(x)1

Figure: A 2D example of unbiased representation learning. Different colored
dots represent treatment groups. (Left) shows sample locations in original
feature space (Right) shows a possible unbiased representation encoded by
some function ¢

2 Johansson, Shalit, and Sontag, 2016.
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Neural network architecture for ITE estimation

Oty -1
| A FOho@),y =1

0
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LJ1PMa (P57, 5
Figure: Neural network architecture for ITE estimation. L is a loss function,

IPM is an integral probability metric. Note that only one of hg and h; is
updated for each sample during training®.

3Shalit, Johansson, and Sontag, 2016.
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Integral Probability Metric (IPM) Regularizer

T FOm@.y -
}};.—D—[:]L(ho(cp),y = Yy)

(JIPM (050,95

An IPM Js a distance function between distributions?

» Minimizing the IPM between treatment groups encourages
an unbiased representation

2Sriperumbudur et al., 2012.
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Integral Probability Metric (IPM) Regularizer

T FOm@.y -
}};.—D—[:]L(ho(cp),y = Yy)

OIPMc (5,85

Definition: IPMg

/ 4(5) (1 (5) — pa(s)) ds

S

IPMg (p1,p2) = sup
gel

G is some family of functions which defines the metric.
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2. IPM¢(p, q) = IPMc(q,p) symmetry
3. IPM¢(p, q) < IPMg(p,r) + IPMg(r,q)  triangle inequality
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Possible Metrics

For IPM¢ to be a valid metric we must use a sufficiently diverse family
of functions G s.t

1. IPMg(p,q) =0 p=gq identity of indiscernibles
2. IPM¢(p, q) = IPMc(q,p) symmetry
3. IPM¢(p, q) < IPMg(p,r) + IPMg(r,q)  triangle inequality

It is know that:

» G := { family of 1-Lipschitz functions} then IPM¢ becomes the
Wasserstein metric (earth movers distance)

» G := { any reproducing kernel Hilbert space with bounded norm }
then IPM¢ becomes the Maximum Mean Discrepancy (MMD)
metric

Authors experiment with both Wasserstein and MMD as candidate
metrics
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000e

Error Bounds
Error in ITE Estimation:

erte = Ep(z) [(ITE(QU) - ITE(:r))Q]

Problem: The true ITE is not known in real-world datasets
All we know are factual errors

But not counterfactual errors

eor =Ep(o)[(Yimt(2) = Vi-4(2))?]



Proposed Method Evaluations Implications & Limitations
[e]e] 000e [e]e]e) [©]

Causality and Treatment Effect Existing Approaches

[e]e]e]e]e]e]e)

Error Bounds
Error in ITE Estimation:

erte = Ep(z) [(ITE(@ - ITE(x))Q]

Problem: The true ITE is not known in real-world datasets
All we know are factual errors

€r =Ep)[(Yi(z) — Yi())?]
But not counterfactual errors
ctor =By [(Yi—e(z) — Yi_4(x))?]

Factual Error Bound (Shalit et al.)

Loss

arg < eptecr <|2(e° + i) +alPMg (p=",p'=)
~—

Effect error Prediction error Treatment/control distance
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000

ITE Evaluation

» No ground truth: Yy and Y7 are never observed for the same x
» Use synthetic data, where structural equations are known

» Real-world data + randomized controlled trial

o Still no ground truth

o Evaluate the risk of induced policy 7s(z) = I(f(z,1) — f(z,0) > )
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ITE Evaluation: IHDP

» Dataset: Semi-synthetic IHDP*
» Real-world features and treatment
» Synthetic outcome

Out-of-sample

IHDP

EITE EATE
OLS/LR-1 5.8+.3 .94 + .06
OLS/LR-2 25+ .1 .31+.02
BLR 5.8+ .3 .93 £ .05
k-NN 4.1+ .2 .79 + .05
BART 23+.1 .34 £+ .02 .
RAND.FOR. | 6.6+.3 .96+ .06 07t
CAUS.FOR. 3.8+ .2 .40 £ .03 Imbalance penalty, o
BNN 21+.1 42+ .03
TARNET 95+.0 .284+.01 Figure: Out-of-sample ITE error versus
CFR MMD | .78 4.0 .31£.01  |pM regularization for CFR Wass, with
CFR Wass 76 .0 274+ .01

high (g = 1), medium and low

Table: Results on IHDP. Lower is (artificial) imbalance between control
better. and treated.

4Hill, 2011.
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(a) Original dataset (b) Wasserstein regularizer

Figure: t-SNE visualizations of the balanced representations of IHDP learned by
the algorithm. Blue (orange) points represent control (treatment) group.
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Implications
+ state of the art method for estimating ITE from observational data;
can use general functions to estimate Yj and Y;
+ Useful for discovering new outcomes. For example:

o Is a drug intended for cancer patients useful for treating alzheimer's
patients?

+ Provides the first generalization-error bound for the expected ITE
estimation error; useful for developing further theory
Limitations
- Assumes no hidden confounding variables
- No results on tightness of bound
o Does minimizing the bound always results in smaller error?
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Implications
+ state of the art method for estimating ITE from observational data;
can use general functions to estimate Yj and Y;
+ Useful for discovering new outcomes. For example:

o Is a drug intended for cancer patients useful for treating alzheimer's
patients?

+ Provides the first generalization-error bound for the expected ITE
estimation error; useful for developing further theory
Limitations
- Assumes no hidden confounding variables
- No results on tightness of bound
o Does minimizing the bound always results in smaller error?

- Generalization to continuous treatments is not obvious
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