

Estimating Individual Treatment Effect:

Generalization Bounds and Algorithms

Uri Shalit · Fredrik D Johansson · David Sontag

Presenters: Vahid & Tom

November 19, 2021

Recall: Potential Outcomes

Potential Outcomes

For covariates X and binary treatment T, potential outcomes $Y_0(x)$ and $Y_1(x)$ are defined as

$$Y_i(x) = \mathbb{E}[Y|X = x, \, do(T = i)]$$

Recall: Average Treatment Effect

Average Treatment Effect (ATE)

ATE is the difference in mean potential outcomes, i.e.,

 $ATE \triangleq \mathbb{E}_x[Y_1(x)] - \mathbb{E}_x[Y_0(x)]$

ATE with Selection Bias

Selection bias may occur when treatment and control groups are not chosen randomly

Individual Treatment Effect

Individual Treatment Effect (ITE)

Answers the question of how well does an ${\bf individual} \ x$ respond to a treatment

ITE
$$\triangleq \mathbb{E}[Y_1|x] - \mathbb{E}[Y_0|x]$$

----- t=0 ----- t=1

Causality and Treatment Effect 0000●00				
Learning ITE	<u>^</u>	() ^ ()		

Learn $m_1(x) = Y_1(x)$ and $m_0(x) = Y_0(x)$ using supervised learning:

$$\hat{\text{ITE}} = m_1(x) - m_0(x)$$

 \blacktriangleright An individual x is either treated or not

0000000 00 0000	o o	000 0	C	

- \blacktriangleright An individual x is either treated or not
- ▶ Observed data (factuals): (x_i, t_i, Y_{t_i})

- \blacktriangleright An individual x is either treated or not
- ▶ Observed data (factuals): (x_i, t_i, Y_{t_i})
- ► Counterfactuals: (x_i, t_i, Y_{1-t_i})

- \blacktriangleright An individual x is either treated or not
- ▶ Observed data (factuals): (x_i, t_i, Y_{t_i})
- ► Counterfactuals: (x_i, t_i, Y_{1-t_i})
- ▶ Need to know both to estimate ITE

- \blacktriangleright An individual x is either treated or not
- ▶ Observed data (factuals): (x_i, t_i, Y_{t_i})
- Counterfactuals: (x_i, t_i, Y_{1-t_i})
- Need to know both to estimate ITE

Figure: For each x, only one potential outcome is observed. One can use similar samples to estimate the other.

 \blacktriangleright In observational datasets x and t may not be independant

----- t=0 ----- t=1

Figure: Induced selection bias from dependence between x and t

Existing Approaches		
00		

Turn observational data into pseudo-randomized trial data by re-weighting samples $^{1} \ \ \,$

Turn observational data into pseudo-randomized trial data by re-weighting samples $^{1} \ \ \,$

▶ Need to estimate P(T|X), which is difficult for high-dim X

Turn observational data into pseudo-randomized trial data by re-weighting samples $^{1} \ \ \,$

▶ Need to estimate P(T|X), which is difficult for high-dim X

▶ Small P(T|X) creates large variance

Turn observational data into pseudo-randomized trial data by re-weighting samples $^{1} \ \ \,$

- ▶ Need to estimate P(T|X), which is difficult for high-dim X
- ▶ Small P(T|X) creates large variance
- ► Works primarily for ATE

¹Austin, 2011.

Unbiased Representation Learning

Learning a representation of data that removes the treatment bias²

Figure: A 2D example of unbiased representation learning. Different colored dots represent treatment groups. (Left) shows sample locations in original feature space (Right) shows a possible unbiased representation encoded by some function ϕ

²Johansson, Shalit, and Sontag, 2016.

Neural network architecture for ITE estimation

Figure: Neural network architecture for ITE estimation. L is a loss function, IPM is an integral probability metric. Note that only one of h_0 and h_1 is updated for each sample during training³.

³Shalit, Johansson, and Sontag, 2016.

Integral Probability Metric (IPM) Regularizer

An IPM is a distance function between distributions^a

 Minimizing the IPM between treatment groups encourages an unbiased representation

^aSriperumbudur et al., 2012.

Integral Probability Metric (IPM) Regularizer

Definition: IPM_G

$$IPM_{G}(p_{1}, p_{2}) = \sup_{g \in C} \left| \int_{s} g(s) (p_{1}(s) - p_{2}(s)) ds \right|$$

 ${\boldsymbol{G}}$ is some family of functions which defines the metric.

	Proposed Method		
	0000		

For IPM_G to be a valid metric we must use a sufficiently diverse family of functions G s.t

	Proposed Method		
	0000		

For IPM_G to be a valid metric we must use a *sufficiently diverse* family of functions G s.t

1. IPM_G
$$(p,q) = 0 \Leftrightarrow p = q$$

2. IPM_G
$$(p,q) = IPM_G(q,p)$$

3.
$$\operatorname{IPM}_G(p,q) \leq \operatorname{IPM}_G(p,r) + \operatorname{IPM}_G(r,q)$$

identity of indiscernibles symmetry triangle inequality

For IPM_G to be a valid metric we must use a *sufficiently diverse* family of functions G s.t

- 1. $\operatorname{IPM}_G(p,q) = 0 \Leftrightarrow p = q$
- 2. $\operatorname{IPM}_G(p,q) = \operatorname{IPM}_G(q,p)$
- 3. $\operatorname{IPM}_G(p,q) \leq \operatorname{IPM}_G(p,r) + \operatorname{IPM}_G(r,q)$

identity of indiscernibles symmetry triangle inequality

It is know that:

► G := { family of 1-Lipschitz functions} then IPM_G becomes the Wasserstein metric (earth movers distance)

For IPM_G to be a valid metric we must use a *sufficiently diverse* family of functions G s.t

- 1. IPM_G $(p,q) = 0 \Leftrightarrow p = q$ identity of indiscernibles
- 2. $\operatorname{IPM}_G(p,q) = \operatorname{IPM}_G(q,p)$
- 3. $\operatorname{IPM}_G(p,q) \leq \operatorname{IPM}_G(p,r) + \operatorname{IPM}_G(r,q)$

identity of indiscernibles symmetry triangle inequality

It is know that:

- ► G := { family of 1-Lipschitz functions} then IPM_G becomes the Wasserstein metric (earth movers distance)
- ▶ $G := \{ \text{ any reproducing kernel Hilbert space with bounded norm } \}$ then IPM_G becomes the Maximum Mean Discrepancy (MMD) metric

For IPM_G to be a valid metric we must use a sufficiently diverse family of functions G s.t

- 1. $IPM_G(p,q) = 0 \Leftrightarrow p = q$ identity of indiscernibles
- 2. $\operatorname{IPM}_G(p,q) = \operatorname{IPM}_G(q,p)$
- 3. $\operatorname{IPM}_G(p,q) \leq \operatorname{IPM}_G(p,r) + \operatorname{IPM}_G(r,q)$

identity of indiscernibles symmetry triangle inequality

It is know that:

- ► G := { family of 1-Lipschitz functions} then IPM_G becomes the Wasserstein metric (earth movers distance)
- ▶ $G := \{ \text{ any reproducing kernel Hilbert space with bounded norm } \}$ then IPM_G becomes the Maximum Mean Discrepancy (MMD) metric

Authors experiment with both Wasserstein and MMD as candidate metrics

		Proposed Method			
000000	00	0000	000	0	

Error in ITE Estimation:

$$\epsilon_{\text{ITE}} = \mathbb{E}_{p(x)} \left[(I\hat{T}E(x) - ITE(x))^2 \right]$$

Problem: The true ITE is not known in real-world datasets

		Proposed Method			
000000	00	0000	000	0	

Error in ITE Estimation:

$$\epsilon_{\text{ITE}} = \mathbb{E}_{p(x)} \left[(I\hat{T}E(x) - ITE(x))^2 \right]$$

Problem: The true ITE is not known in real-world datasets All we know are factual errors

$$\epsilon_F^t = \mathbb{E}_{p(x)}[(Y_t(x) - \hat{Y}_t(x))^2]$$

	Proposed Method		
	0000		

Error in ITE Estimation:

$$\epsilon_{\text{ITE}} = \mathbb{E}_{p(x)} \left[(I\hat{T}E(x) - ITE(x))^2 \right]$$

Problem: The true ITE is not known in real-world datasets All we know are factual errors

$$\epsilon_F^t = \mathbb{E}_{p(x)}[(Y_t(x) - \hat{Y}_t(x))^2]$$

But not counterfactual errors

$$\epsilon_{CF}^{t} = \mathbb{E}_{p(x)}[(Y_{1-t}(x) - \hat{Y}_{1-t}(x))^{2}]$$

	Proposed Method		
	0000		

Error in ITE Estimation:

$$\epsilon_{\text{ITE}} = \mathbb{E}_{p(x)} \left[(I\hat{T}E(x) - ITE(x))^2 \right]$$

Problem: The true ITE is not known in real-world datasets All we know are factual errors

$$\epsilon_F^t = \mathbb{E}_{p(x)}[(Y_t(x) - \hat{Y}_t(x))^2]$$

But not counterfactual errors

$$\epsilon_{CF}^{t} = \mathbb{E}_{p(x)}[(Y_{1-t}(x) - \hat{Y}_{1-t}(x))^{2}]$$

000000 00 000 000 0		Evaluations	
		000	

ITE Evaluation

 \blacktriangleright No ground truth: Y_0 and Y_1 are never observed for the same x

ITE Evaluation

- \blacktriangleright No ground truth: Y_0 and Y_1 are never observed for the same x
- ▶ Use synthetic data, where structural equations are known

ITE Evaluation

- \blacktriangleright No ground truth: Y_0 and Y_1 are never observed for the same x
- ▶ Use synthetic data, where structural equations are known
- ▶ Real-world data + randomized controlled trial
 - $\circ~$ Still no ground truth
 - Evaluate the risk of induced policy $\pi_f(x) = \mathbb{I}(f(x, 1) f(x, 0) > \lambda)$

		Evaluations	
000000		000	

ITE Evaluation: IHDP

- Dataset: Semi-synthetic IHDP⁴
- ▶ Real-world features and treatment
- Synthetic outcome

Out-of-sample

	IH	DP
	ϵ_{ITE}	ϵ_{ATE}
OLS/LR-1	$5.8 \pm .3$	$.94 \pm .06$
OLS/LR-2	$2.5 \pm .1$	$.31 \pm .02$
BLR	$5.8 \pm .3$	$.93 \pm .05$
k-NN	$4.1 \pm .2$	$.79 \pm .05$
BART	$2.3 \pm .1$	$.34 \pm .02$
RAND.FOR.	$6.6 \pm .3$	$.96 \pm .06$
Caus.For.	$3.8 \pm .2$	$.40 \pm .03$
BNN	$2.1 \pm .1$	$.42 \pm .03$
TARNET	$.95\pm.0$	$.28\pm.01$
CFR MMD	$.78\pm.0$	$.31 \pm .01$
CFR Wass	$.76\pm.0$	$.27\pm.01$

Table: Results on IHDP. Lower is better.

Figure: Out-of-sample ITE error versus IPM regularization for CFR Wass, with high (q = 1), medium and low (artificial) imbalance between control and treated.

ITE Evaluation: Balanced Representation

(a) Original dataset

(b) Wasserstein regularizer

Figure: t-SNE visualizations of the balanced representations of IHDP learned by the algorithm. Blue (orange) points represent control (treatment) group.

		Implications & Limitations	

+ state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1

		Implications & Limitations	

- + state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1
- + Useful for discovering new outcomes. For example:

		Implications & Limitations	

- + state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1
- + Useful for discovering new outcomes. For example:
 - $\circ~$ Is a drug intended for cancer patients useful for treating alzheimer's patients?

		Implications & Limitations	

- + state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1
- + Useful for discovering new outcomes. For example:
 - $\circ~$ Is a drug intended for cancer patients useful for treating alzheimer's patients?
- + Provides the first generalization-error bound for the expected ITE estimation error; useful for developing further theory

		Implications & Limitations	

- + state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1
- + Useful for discovering new outcomes. For example:
 - $\circ~$ Is a drug intended for cancer patients useful for treating alzheimer's patients?
- + Provides the first generalization-error bound for the expected ITE estimation error; useful for developing further theory

		Implications & Limitations	

- + state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1
- + Useful for discovering new outcomes. For example:
 - $\circ~$ Is a drug intended for cancer patients useful for treating alzheimer's patients?
- + Provides the first generalization-error bound for the expected ITE estimation error; useful for developing further theory

Limitations

- Assumes no hidden confounding variables

		Implications & Limitations	

- + state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1
- + Useful for discovering new outcomes. For example:
 - $\circ~$ Is a drug intended for cancer patients useful for treating alzheimer's patients?
- + Provides the first generalization-error bound for the expected ITE estimation error; useful for developing further theory

Limitations

- Assumes no hidden confounding variables
- No results on tightness of bound

		Implications & Limitations	

- + state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1
- + Useful for discovering new outcomes. For example:
 - $\circ~$ Is a drug intended for cancer patients useful for treating alzheimer's patients?
- + Provides the first generalization-error bound for the expected ITE estimation error; useful for developing further theory

Limitations

- Assumes no hidden confounding variables
- No results on tightness of bound
 - o Does minimizing the bound always results in smaller error?

		Implications & Limitations	

- + state of the art method for estimating ITE from observational data; can use general functions to estimate Y_0 and Y_1
- + Useful for discovering new outcomes. For example:
 - $\circ~$ Is a drug intended for cancer patients useful for treating alzheimer's patients?
- + Provides the first generalization-error bound for the expected ITE estimation error; useful for developing further theory

Limitations

- Assumes no hidden confounding variables
- No results on tightness of bound
 - $\circ~$ Does minimizing the bound always results in smaller error?
- Generalization to continuous treatments is not obvious

		Proposed Method			References
Austin, P	eter (May 2011). "An Introd	uction to	Propensity Score	
Methods f	or Reducing the	e Effects of C	onfounding	g in Observational	
Studies".	n: <i>Multivariate</i>	behavioral re	esearch 46,	pp. 399-424. DOI:	
10.1080/	00273171.201	1.568786.			
Johanssor	n, Fredrik D., U	ri Shalit, and	David So	ntag (May 2016).	
"Learning	Representation	s for Counter	factual Inf	erence". In: arXiv	
<i>e-prints</i> , a	rXiv:1605.03663	l, arXiv:1605	.03661. ar)	Xiv: 1605.03661	
[stat.ML]].				
Shalit, Ur	i, Fredrik D. Jo	hansson, and	David So	ntag (June 2016).	
"Estimatin	ig individual tre	atment effect	t: generaliz	ation bounds and	
algorithms	In: arXiv e-p	rints, arXiv:1	606.03976	, arXiv:1606.03976.	
arXiv: 160	6.03976 [stat	t.MLJ.	o) #0		
Sriperum	oudur, Bharath	K et al. (201	2). "On th	ie empirical	
estimation	of integral pro	bability metri	cs In: El	ectronic Journal of	
Statistics	o.none, pp. 155	0–1599. DOI:	10.1214/	(12-EJS/22. URL:	
https://o	do1.org/10.1	214/12-EJS/	22.		
Hill, Jenn	ifer L (2011). "	Bayesian non	parametric	c modeling for caus	al
interence".	In: Journal of	Computation	al and Gra	aphical Statistics	
20.1, pp. 2	217-240.				