

OCTOBER 27, 2021

PREPARED BY **RUIJING ZENG & TONGZI WU**

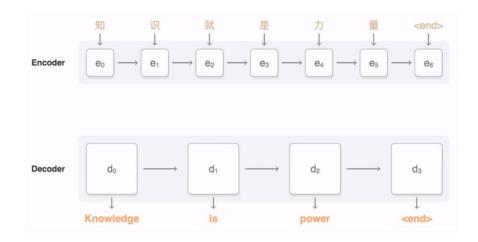
AGENDA

- Background & Related Work
- Model Architecture
- Experiment
- Medical Applications
- Conclusion

BACKGROUND

Motivation & Definition

- Motivation 2 fold
 - Improve the performance of the machine translation model.
 - Reduce sequential computation so that allow for more parallelization and higher training speed.
- Definition of Machine Translation
 - The task of translating a sentence in a source language to a different target language.
- How to encode words?
 - One-hot: of high dimensions, too sparse
 - Embedding: a representation of words in a relatively lowdimensional space
 - Words => Embedding (Word2Vec)



1000 words

One-hot vector representation

DISORDER: [1, 0, 0, ...]

PROBLEM: [0, 1, 0, ...]

PROCEDURE : [0, 0, 1 , ...]

Embedding representation

DISORDER: [-1.160, 0.343, -0.555, ...]

PROBLEM: [0.324, -1.294, -0.608, ...]

PROCEDURE: [-0.484, 0.348, -0.846, ...]

1000 dimensions

16 or less dimensions

RELATED WORK

Encoder-Decoder Seq2Seq Model

Architecture:

- Both the encoder and decoder are Recurrent Neural Network (RNN).
- $_{\circ}$ A single context vector c is generated at the end of the encoder.
- The decoder uses the context vector to yield the output.

Limitations:

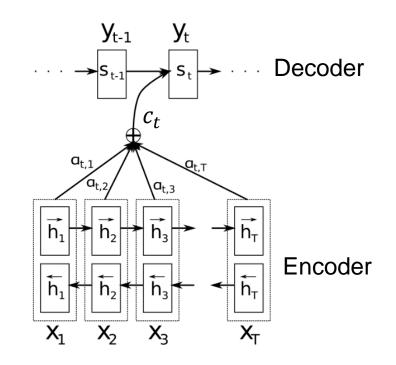
- The context vector is "overloaded" with information.
- Parallelization is precluded.



RELATED WORK

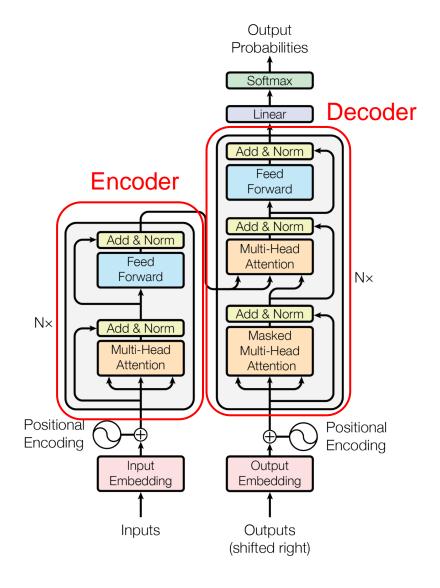
Seq2Seq with Attention Mechanism

- Architecture:
 - \circ Defines various context vector c_t for each hidden state s_t in decoder.
 - \circ c_t is dependent on s_{t-1} and all the hidden states in the encoder.
- Strength:
 - Solved the "overloaded context vector" problem.
- Limitation:
 - The problem of parallelization remains.



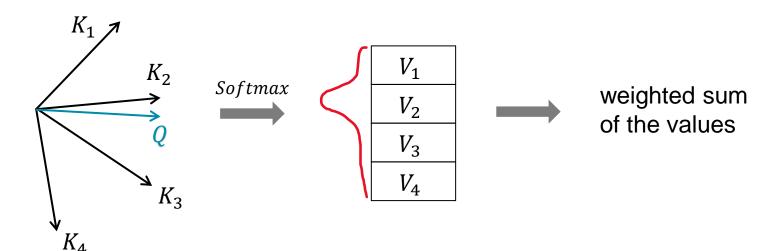
Transformer Architecture - Parallelizable

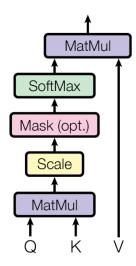
- How does it work?
 - Based solely and entirely on attention mechanisms.
 - Completely dispense with recurrence and convolutions.
- Remains the encoder-decoder structure.



Attention - "Scaled Dot-Product Attention"

- What is attention?
 - Mapping a query (Q) and a set of key-value (K-V) pairs to an output
 - Similarity

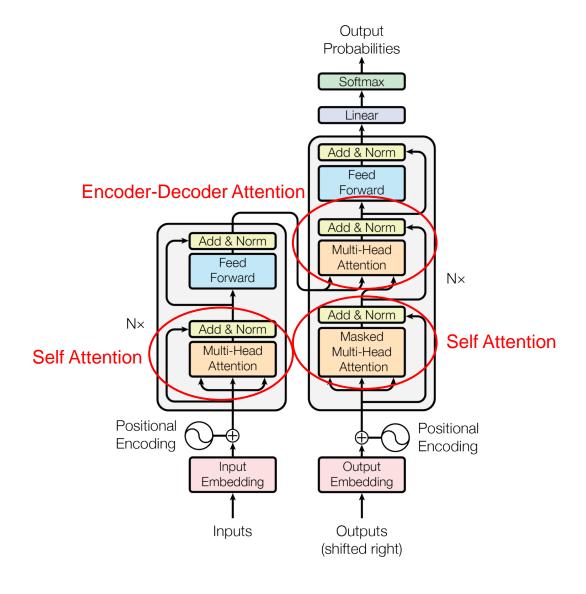




Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

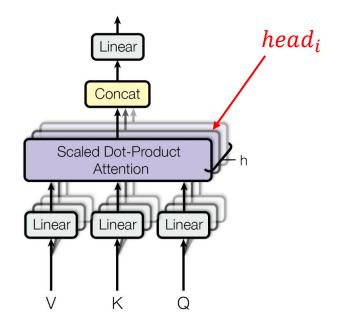
Attention Modules

- Self Attention:
 - Computing representations of the sequence.
 - Query, key, value are the same.
- Encoder-Decoder Attention:
 - Mapping query from decoder to key-value pairs in encoder.
 - Key and value are from encoder, query is from decoder.



Multi-Head Attention

- Architecture:
 - Project Q, K and V into different subspaces
 - Perform attention to get head_i
 - Concatenated and projected to get final output.
- Why Multi-Head?
 - Allows the model to jointly learn the representation from different subspaces at different positions.
 - Heads subspaces different sentence structures
 - Higher performances with similar cost.



$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

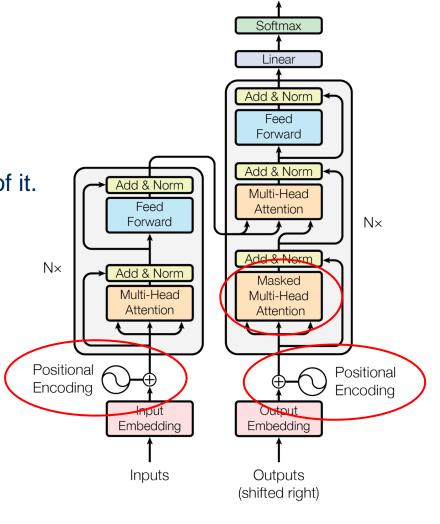
Another Crucial Things

- Positional Encoding
 - No recurrence, not aware of the position.
 - Add "positional encodings" to make the model aware of it.
- Masked Self-Attention

Without Mask

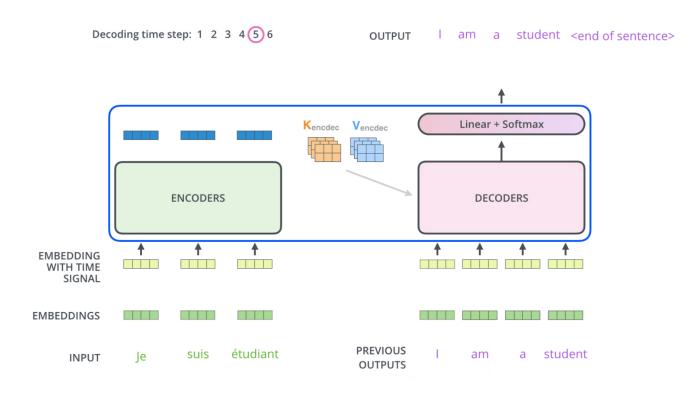
Le \rightarrow Le gros chien rouge gros → Le gros chien rouge chien → Le gros chien rouge rouge → Le gros chien rouge

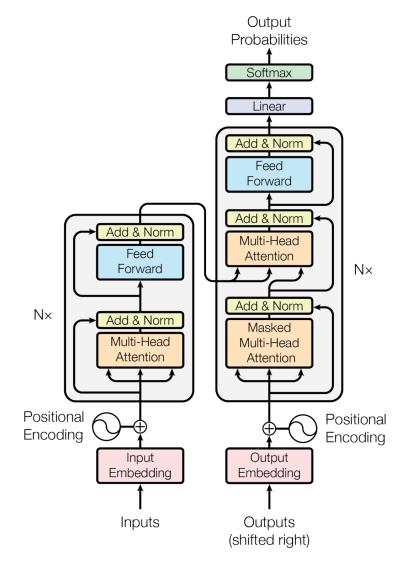
With Mask



Output **Probabilities**

Workflow





MACHINE TRANSLATION DATASET

• WMT 2014 is a collection of datasets used in news translation, quality estimation, metrics and medical text translation tasks of the Ninth Workshop on Statistical Machine Translation.

Dataset	Sentence Pairs	Tokens
WMT 2014 English-to-German	4.5M	37,000
WMT 2014 English-to-French	36M	32,000

BLEU SCORE

- BLEU (BiLingual Evaluation Understudy) is a metric for automatically evaluating machinetranslated text.
- [0, 1], measuring the **similarity** of the machine-translated text to a set of high quality reference translations.

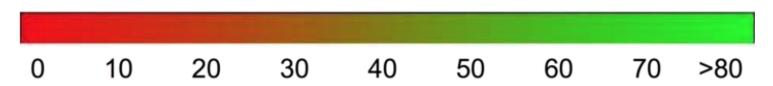
$$\text{BLEU} = \min \left(1, \exp\left(1 - \frac{\text{reference-length}}{\text{output-length}}\right)\right) \left(\prod_{i=1}^{4} precision_{i}\right)^{1/4}$$
brevity penalty

n-gram overlap

BLEU SCORE

BLEU Score	Interpretation
< 10	Almost useless
10 - 19	Hard to get the gist
20 - 29	The gist is clear, but has significant grammatical errors
30 - 40	Understandable to good translations
40 - 50	High quality translations
50 - 60	Very high quality, adequate, and fluent translations
> 60	Quality often better than human

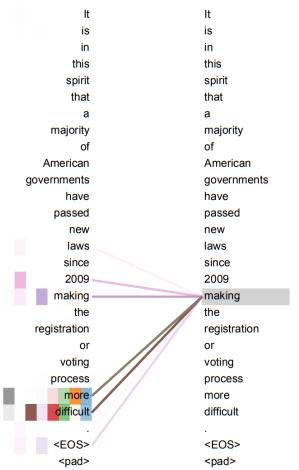
The following color gradient can be used as a general scale interpretation of the BLEU score:

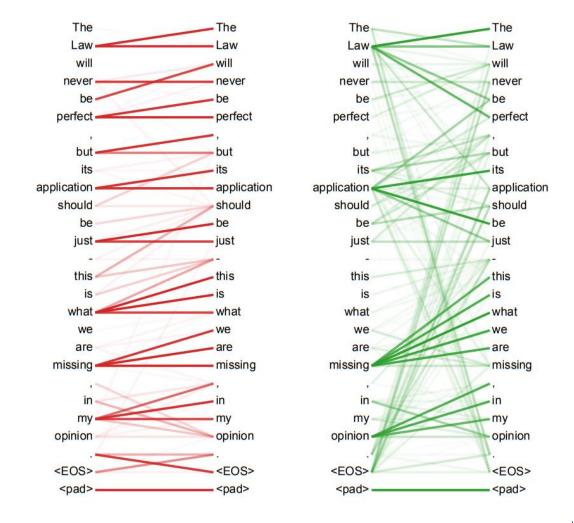


RESULT

Model	BLEU		Training C	Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1		10 ¹⁸	
Transformer (big)	28.4	41.8	2.3 ·	10^{19}	

RESULT



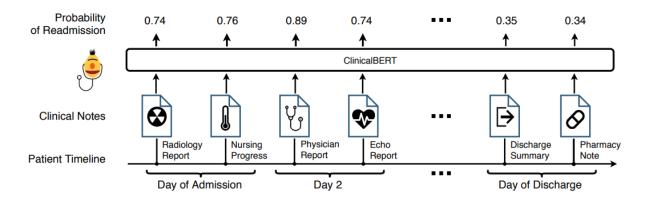


MEDICAL APPLICATIONS

MEDICAL TEXT – BERT

ICD Coding prediction

Readmission possibility prediction from clinical notes



Discharge Summary

ICD-9 Codes

[005.81]

[008.45] [008.62]

[008.63]

[008.69]

[008.8]

NER, Relation Extraction, Sentence Similarity, Document Classification, Question Answering ...

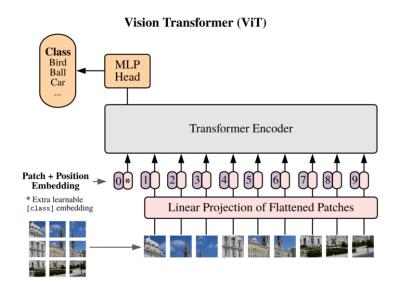
MEDICAL APPLICATIONS

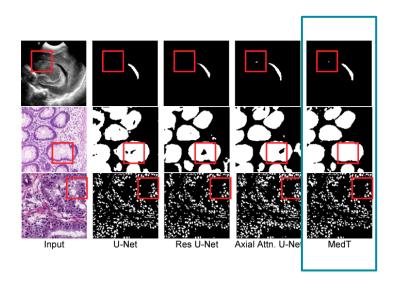
Medical Image

- Vision Transformer by Google 2020
- Medical Transformer: Gated Axial-Attention for Medical Image Segmentation
- https://arxiv.org/abs/2102.10662

Drug classification

- o Toxic / Enzyme
- Using Graph Neural Networks
- Universal Graph Transformer Self-Attention Networks
- https://arxiv.org/abs/1909.11855





CONCLUSION

 Transformer is the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed selfattention.

Strengths

- Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions.
- Superior in quality while being more parallelizable and requiring significantly less time to train.

Limitations

- Attention can only deal with fixed-length text strings. The text has to be split into a certain number of segments or chunks before being fed into the system as input, which causes context fragmentation.
- Attention has a quadratic complexity in input length, meaning attention doesn't scale well over long distances.

20	UNIVERSITY OF
	TORONTO

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

THANK YOU

QUESTIONS?

