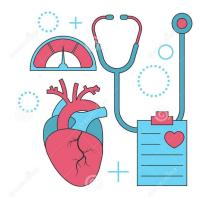


Fully Automated Echocardiogram Interpretation in Clinical Practice Feasibility and Diagnostic Accuracy Zhang J et al.


Shujun Yan, Dianna Kan

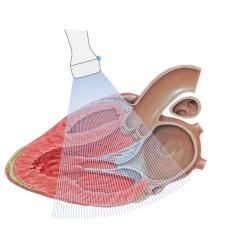
Outline

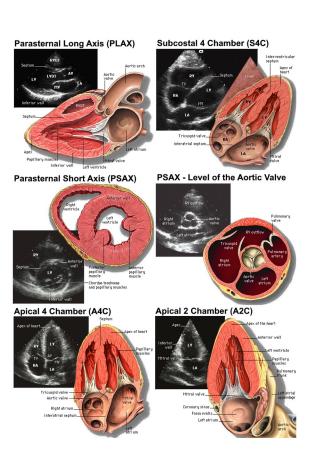
- Motivation
- Goal
- Background
- Workflow
 - View classification
 - Segmentation
 - Cardiac structure and function
 - Disease detection
- Strength and limitation

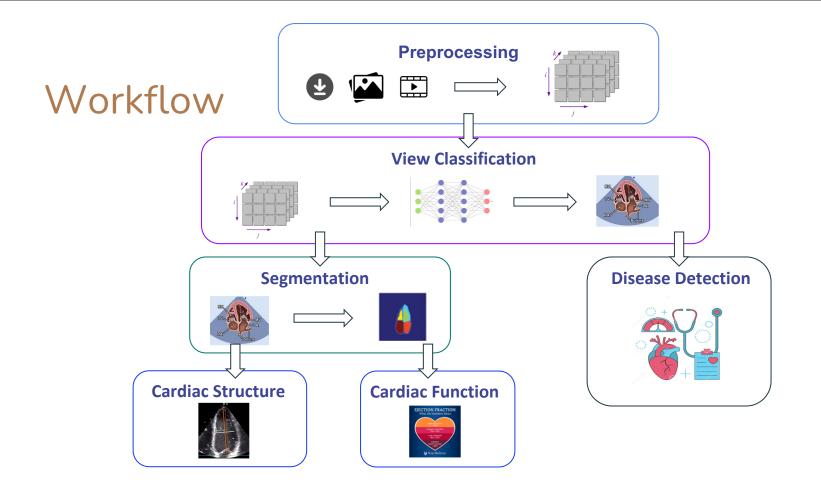
Motivation

Early detection

Echocardiography

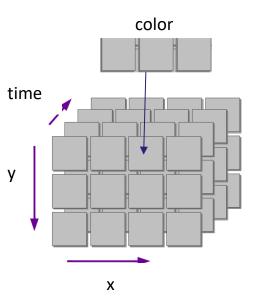

Electronic medical records

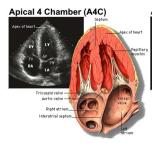

Goal


A fully automated computer vision pipeline for the interpretation of cardiac structure, function, and disease detection using a combination of computer vision approaches.

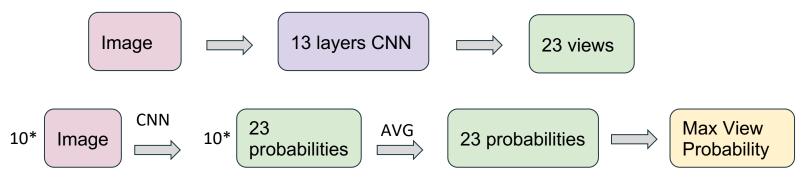
Background Echocardiography

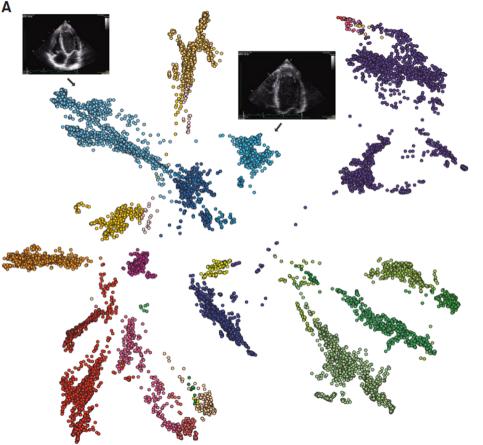
- About 70 videos
- Different viewpoints





Preprocessing


- Data from University of California San Francisco (UCSF) Studies
- Converted to multidimensional numeric arrays of pixels
- Used for 4 main tasks
 - View classification (277 echocardiograms)
 - Image segmentation (791 images over 5 views)
 - Measurements of cardiac structure and function
 - Disease detection


View classification

- Manual labels
- View Probability Quality Score: averaged maximum view probability for all videos in a study

View classification results

t-Distributed Stochastic Neighbor Embedding

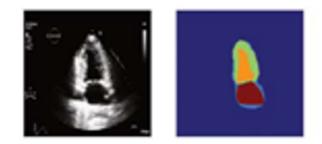
View classification results

84% accuracy

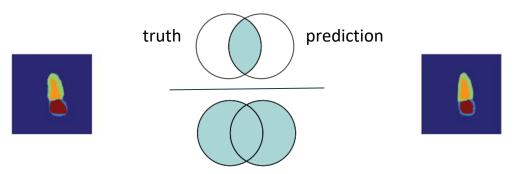
		10	, ui	υı		10			IIC.	<i>v</i>	iC	vv C	יו כ		ш	u	vic	u	a		aų	je	3
PLAX.remote -	364	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PLAX -	13	1155	10	82	3	0	1	0	27	0	0	9	0	10	1	0	0	0	0	0	0	0	0
PLAX.zoom of LA -	0	0	81	75	0	0	0	4	0	1	0	0	0	0	0	6	0	0	0	4	0	0	0
PLAX.centered on LA –	0	21	52	107	2	0	0	0	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0
RV inflow -	0	18	4	18	266	2	15	2	8	0	7	0	0	0	1	0	5	0	0	0	0	0	0
PSAX.apex-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PSAX.PapMuscle -	0	17	0	0	41	26	936	129	13	2	1	10	0	0	0	0	19	21	0	2	0	1	0
PSAX.MV-		1	0	5	7	18	0	195	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PSAX.AoV-	0	17	3	14	0	0	0	4	766	20	0	0	0	0	0	0	1	0	1	0	15	2	0
PSAX.AoV zoom -	0	0	29	1	0	0	1	8	39	290	0	0	0	0	0	4	0	0	0	3	13	0	0
A2c.no occlusions -	0	1	0	0	0	4	0	0	9	0	1070	90	36	80	8	0	38	17	0	23	2	0	0
A2c.occluded LA -	0	0	0	0	0	0	0	0	0	0	67 64	362	2 10	0	9	0 0	9 1	44	0 10	1	0	0	0
A2c.occluded LV -	0	0	0	0	0 0	0	0	2 0	0	0	20	0 5	0	435	0 80	30	3	0	0	0	0	0 0	0
A3c.no occlusions – A3c.occluded LA –	0	0	0	0	0	0	0	0	0	0	1	3	12	21	161	0	0	1	0	0	0	0	0
A3c.occluded LV -	0	õ	õ	õ	õ	0	õ	õ	õ	õ	ò	0	9	11	0	õ	õ	ò	õ	õ	õ	õ	0
A4c.no occlusions -	õ	õ	ŏ	õ	õ	õ	2	õ	õ	õ	90	1	0	0	õ	õ	1530	45	104	93	ŏ	õ	õ
A4c.occluded LA-	õ	ŏ	õ	õ	õ	õ	3	õ	õ	õ	22	32	ŏ	õ	õ	ŏ	28	543	20	12	õ	ŏ	õ
A4c.occluded LV -	0	0	0	0	0	0	0	6	0	0	0	0	1	0	0	0	3	4	47	20	0	0	0
A5c-	Ő	Ō	õ	ō	Ō	õ	õ	0	ō	õ	õ	ō	ò	õ	õ	õ	14	Ó	9	185	0	õ	0
Subcostal -	3	1	1	0	1	0	0	0	2	0	3	0	0	0	0	0	9	1	9	15	930	1	24
Suprasternal-	0	0	0	8	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	36	146	16
- Suprasternal - Other	0	10	0	20	0	0	14	0	0	0	0	0	0	3	0	0	0	0	0	0	20		325
	1	5	_	-	-	5	0	-	-	-	1	_	-	10	-	-	1	_	-	5	<u> </u>	1	1
	PLAX.remote	PLAX	ΓA		RV inflow	PSAX.apex	PapMuscle	PSAX.MV	PSAX.AoV	ЪС	č	1	\geq	č	ΓA	\leq	č		\geq	A5c	Subcostal	Suprasternal	Other
	Ĕ	2	Ę		Jf	ap	ŝ	5	٩.	ŏ	. <u>0</u>	σ	g	. <u>0</u>		g	<u>.</u>	σ	g	\triangleleft	SO	eri	き
	ē	Ш.	č	0	.=	×	ž	R	\times	7	ň	g	qe	ň	g	qe	ñ	qe	qe		8	ste	0
	×		ы	eq	ŝ	A	ď	ŝ	A O	6	2	ĭ		2	ĭ		2	ĭ			E.	ra	
	A		õ	er		ŝ	ĥ	Δ.	č	٩.	ŏ	8	8	ŏ	8	8	ŏ	8	S		0	dr	
	2		2	Ľ,		-				\times	Q	õ	0	2	õ	0	Q	õ	0			ົວ	
			PLAX.zoom of	AX.centered on LA			PSAX.			SAX.AoV zoom	A2c.no occlusions	A2c.occluded LA	A2c.occluded	A3c.no occlusions	A3c.occluded	A3c.occluded LV	A4c.no occlusions	A4c.occluded LA	A4c.occluded				
			2	×			S			ñ	ğ	Ä	A	ğ	¥	Å	4	Ā	À				
			-	A			-				\triangleleft			\triangleleft			\triangleleft						
				Г																			

Predictions

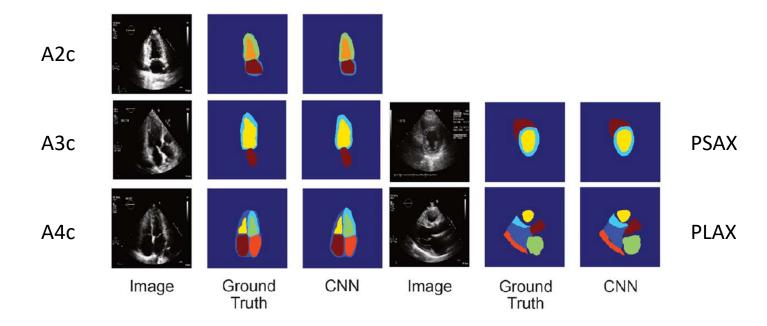
Prediction of echo views for individual images


0.75

0.50


0.25

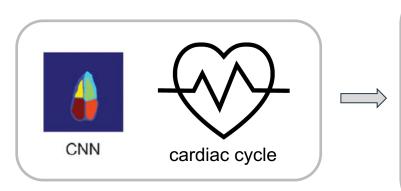
0.00

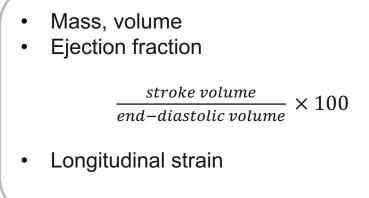

Segmentation

- CNN models with U-net algorithm
- 5 views: PLAX, PSAX, A2c, A3c, and A4c
- Manual traced cardiac structures on 791 images as ground truth
- Accuracy assessment with cross-validation using intersection over union (IoU) metric
- IoU:

Segmentation - results

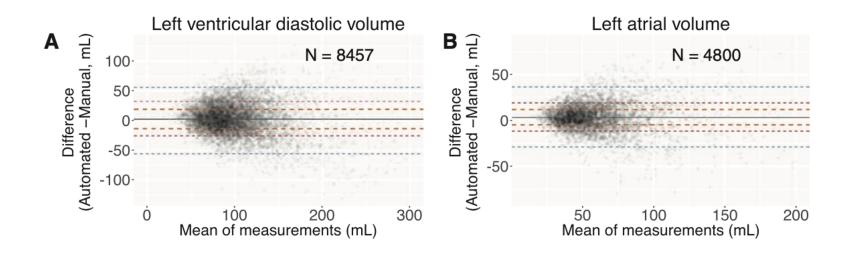
Segmentation - results

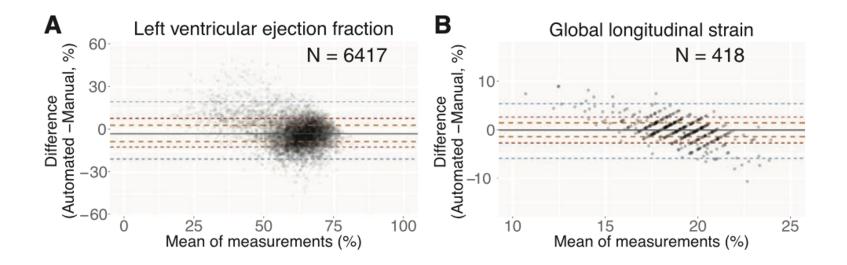

View	Number of Images Used for Training	Segmented Area	loU Accuracy
A2c	214	Left atrium blood pool	88.2
		Left ventricle blood pool	89.1
		Left ventricle myocardium	72.2
A3c	141	Left atrium blood pool	88.3
		Left ventricle blood pool	88.3
		Left ventricle myocardium	72.7
A4c	182	Left atrium blood pool	<mark>89.8</mark>
		Left ventricle blood pool	88.9
		Left ventricle myocardium	73.7
		Right atrium blood pool	88.1
		Right ventricle blood pool	83.3


		1	
PLAX	130	Left atrium blood pool	86.1
		Left ventricle blood pool	87.9
		Right ventricle blood pool	85.2
		Aortic root	86.4
		Anterior septum	76.8
		Posterior wall	74.9
PSAX	124	Left ventricle blood pool	79.6
		Left ventricle myocardium	74.0
		Right ventricle blood pool	64.6

outlier

Cardiac structure & function

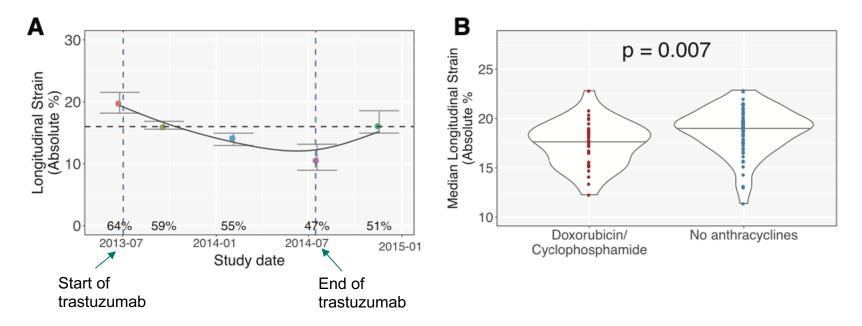

- Compare the automated and manually derived results (8666 samples)



Lang RM et al., Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. *J Am Soc Echocardiogr.* 2015;28:1–39.e14

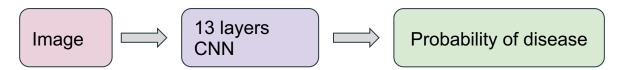
Cardiac structure absolute difference

Cardiac function absolute difference

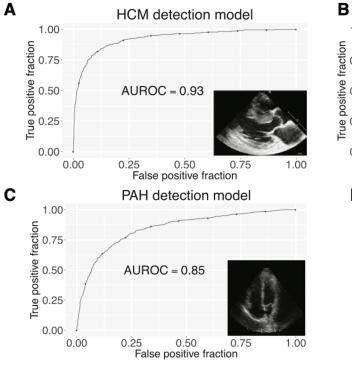

Cardiac function & structure results

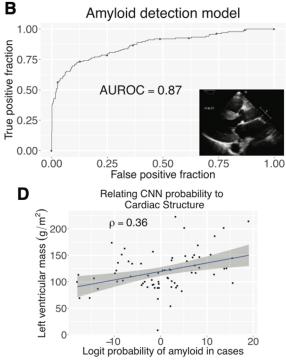
	Number of		Absolute Deviation: Automated vs Manual (% of Manual)				
Metric	Echocardiograms Used	Median Value (IQR)	50	75	95		
Left atrial volume, mL	4800	53 (40–71)	9 (16)	16 (29)	33 (66)		
Left ventricular diastolic volume, mL	8457	92 (72–119)	16 (17)	29 (31)	56 (68)		
Left ventricular systolic volume, mL 🛛 루	8427	33 (24–47)	9 (26)	16 (47)	39 (108)		
Left ventricular mass, g 🛛 루	5952	148 (11–160)	23 (15)	42 (28)	91 (95)		
Left ventricular ejection fraction	6407	65 (58–69)	6 (10)	11 (17)	20 (40)		
Global longitudinal strain 🛛 🔒	418	19 (17–21)	1.4 (8)	2.7 (14)	5.8 (31)		
Global longitudinal strain (Johns Hopkins PKD study)	110	18 (16–20)	1.6 (9)	2.8 (17)	5.4 (39)		

Internal consistency

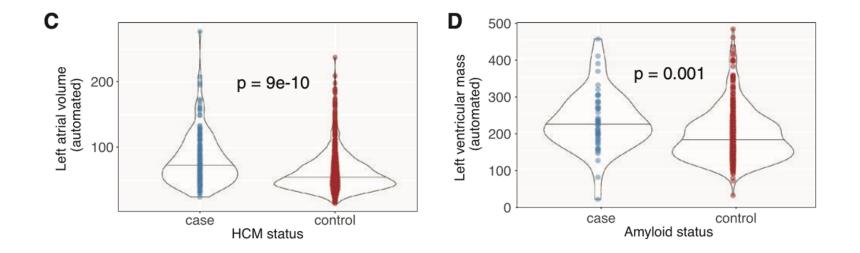

Comparison	N	Correlation – Manual vs. Manual	Correlation – Automated vs. Automated
	4040	(p-value)	(p-value)
Left atrial volume vs. left ventricular mass	4012	0.54 (<2e-16)	0.56 (<2e-16)
Left ventricular mass vs. left ventricular diastolic volume	5874	0.62 (<2e-16)	0.61 (<2e-16)
Left ventricular mass vs. left ventricular systolic volume	5856	0.58 (<2e-16)	0.55 (<2e-16)
Left atrial volume vs. left ventricular diastolic volume	4748	0.48 (<2e-16)	0.56 (<2e-16)
Left atrial volume vs. left ventricular systolic volume	4738	0.46 (<2e-16)	0.49 (<2e-16)
Left atrial volume vs. left ejection fraction	4720	-0.22 (<2e-16)	-0.23 (<2e-16)
Left ventricular mass vs. global longitudinal strain	243	-0.16 (0.01)	-0.27 (<2e-16)
Left ventricular mass vs. left ejection fraction	5123	-0.28 (<2e-16)	-0.28 (<2e-16)
Left ventricular diastolic volume vs. global longitudinal	326	-0.15 (0.006)	-0.17 (0.002)
strain		, , ,	, <i>,</i>
Left ventricular systolic volume vs. global longitudinal	326	-0.29 (<2e-16)	-0.27 (<2e-16)
strain			, ,
Left ventricular ejection fraction vs. global longitudinal	251	0.37 (<2e-16)	0.32 (<2e-16)
strain			, ,

Trajectories of patients treated with cardiotoxic chemotherapies




Disease detection

- 3 diseases:
 - Hypertrophic cardiomyopathy (HCM)
 - Cardiac amyloidosis
 - Pulmonary arterial hypertension (PAH)
- Multiple random images from each video for training



Cardiac measurements & disease status

Strength

- Cloud-based _____
- Quality assessment + parallel improvement
- Subclasses + occlusions
- More chambers segmented
- 🧕 disease-detection models from raw images
- Surveillance of echocardiographic data

Limitations

- Outliers + large deviations
- Results affect downstream models
- Selection of frames to avoid foreshortening or irregularities
- No comparison to other models
- Lack of ECG information \rightarrow bias

Thank you

