Dissecting Racial Bias in an Algorithm used to Manage the Health of Populations

CSC 2541 5th Nov 21

> Santosh Kolagati Omkar Dige

Overview

- Background
- Why should we care?
- Problem Formulation
- Dataset & Analytic Strategy
- Results
- Implications & Limitations

Background

- Image searches for professions such as CEO produce fewer images of women.¹
- Job search ads for highly paid positions are less likely to be presented to women.²
- Natural language processing algorithms encode language in gendered ways.³

- 2. Datta, A., Tschantz, M. C., & Datta, A. (2015). Automated experiments on ad privacy settings: A tale of opacity, choice, and discrimination.
- 3. Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases.

^{1.} Kay, M., Matuszek, C., & Munson, S. A. (2015). Unequal representation and gender stereotypes in image search results for occupations.

Why should we care?

These systems are deployed in critical sectors such as:

- Law enforcement
- Medical care
- Education

Risk Assessment

Two Drug Possession Arrests

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.

Two DUI Arrests

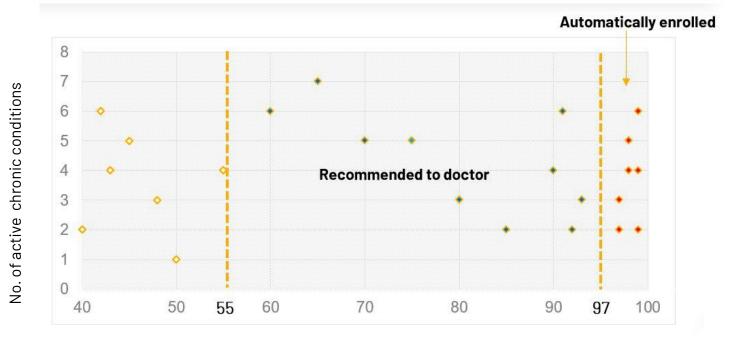
Lugo crashed his Lincoln Navigator into a Toyota Camry while drunk. He was rated as a low risk of reoffending despite the fact that it was at least his fourth DUI.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Problem Formulation

- High-risk care management programs.
- Applied to roughly 200 million people in the US each year!
- Effective and reduce cost.
- What about bias?

Algorithm Risk Score

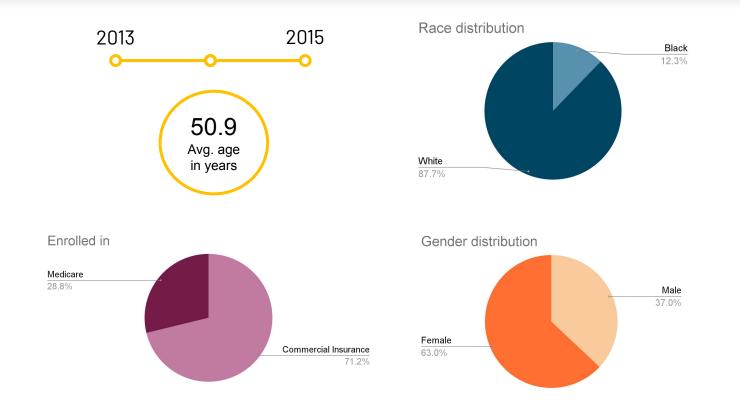


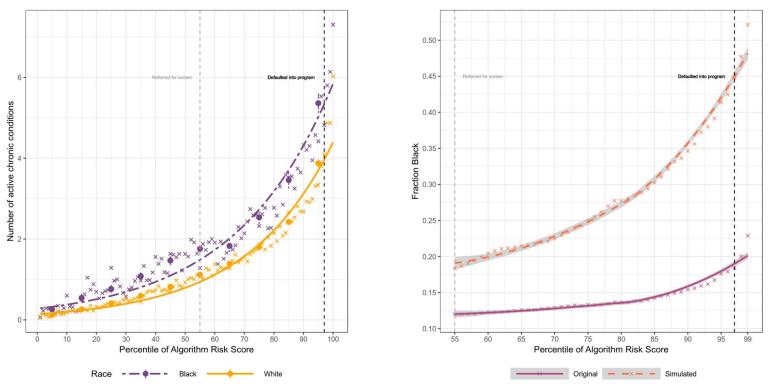
Percentile Risk Score

Check for racial disparities

- Compare algorithmic risk score for patient *i* in year $t(R_{i,t})$ to data on patients' health $H_{i,t}$.
- Check how well the risk score is calibrated across race for health as well as costs, C.

Dataset





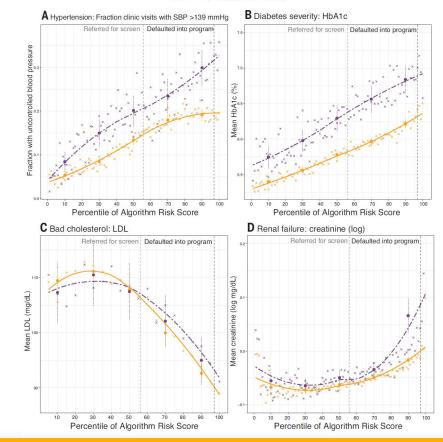
Conditional on Algorithm Risk Score

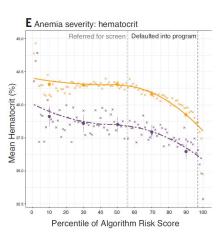
Simulation

- Consider a risk threshold, α .
- Identify white patient (i) with R_i > α.
 Compare this to black patient (j) with R_i < α.
- If $H_i > H_{j'}$ replace healthier white patient with sicker black patient.
- Repeat this procedure until $H_i = H_i$.

Results of the Simulation

- For all risk thresholds above 50th percentile, it increased the fraction of black patients.
- At 97th percentile, fraction of black patients rose from 17.7% to 46.5%.





Biomarkers vs. Algorithm Risk Score

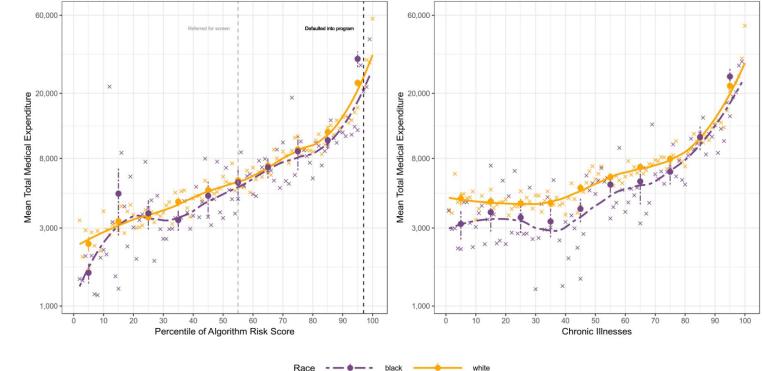
Prediction on Healthcare costs

 The algorithm's prediction on health needs, is in fact, a prediction on healthcare costs.

But costs seem similar for both black and white patients.
 So, there's no disparity right?

WRONG

Algorithmic bias still exists



Medical Expenditure for Risk Score vs. Chronic Illnesses

Why Do These Disparities Arise?

- Poor patients face several setbacks in accessing health care.
- Direct/taste-based discrimination.
- Black patients spend less on healthcare.
- Thus, accurate prediction of costs necessarily means racially biased on health.

Sources of Bias

Experiments were performed using the following 3 labels:

- Total costs (original)
- Avoidable costs costs due to emergency visits and hospitalizations
- Number of active chronic conditions

Label choice bias: p[B|R>T]=p[B|R'>T]

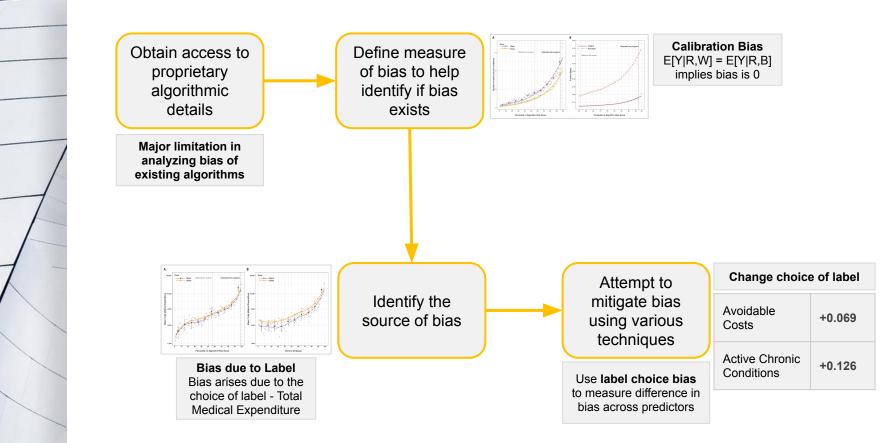
Algorithm training label Total costs		Cor	Fraction of B	Fraction of Black patients in					
	Total costs		Avoidable costs		Active chronic condition		group with highest risk (SE)		
	0.165	(0.003)	0.187	(0.003)	0.105	(0.002)	0.141	(0.003)	
Avoidable costs	0.142	(0.003)	0.215	(0.003)	0.130	(0.003)	0.210	(0.003)	
Active chronic conditions	0.121	(0.003)	0.182	(0.003)	0.148	(0.003)	0.267	(0.003)	
Best-to-worst difference	0.044		0.033		0.043	1	0.126		
ndicates the consistency in predictive							Indicates the effect of		
erformance of model with different labels							different label on bias		

Experiments on Label Choice

- Realized enrollment decisions also depend on doctors response and other administrative factors.
- 4 counterfactual simulations are performed to put the numbers in context
 - 1. Calculate enrollment rate within each percentile randomly sample patients.
 - 2. Calculate enrollment rate within each percentile highest predicted health.
 - 3. Top 1.3% of highest predicted costs.
 - 4. Top 1.3% of highest number of active chronic conditions.

Population	Fracti	on Black (SE)	Fraction	of all costs (SE)	Fraction of all activ	ve chronic conditions (SE)
Observed program enrollment (1.3%)	0.192	(0.003)	0.029	(0.001)	0.033	(0.001)
		Simulated	alternative enr	ollment rules		
Random, in predicted-cost bin	0.183	(0.003)	0.044	(0.002)	0.034	(0.001)
Predicted health, in predicted-cost bin	0.269	(0.003)	0.044	(0.002)	0.064	(0.002)
Highest predicted cost	0.172	(0.003)	0.100	(0.002)	0.047	(0.002)
Worst predicted health	0.292	(0.004)	0.067	(0.002)	0.076	(0.002)

Doctor's Decisions vs. Algorithmic Predictions



Procedure to Identify and Mitigate Bias

- Analyses replicated on 3,695,943 commercially insured patients (national dataset).
- Found **48,772** more active chronic conditions in Black patients.
- Modified label to combine health prediction with cost prediction.
- Achieved 84% reduction in excess active chronic conditions in Black patients (7,758).

Implications

- Bias can arise even from reasonable choices of label and hence careful design of labels is important.
- The findings will motivate other manufacturers to check for biases.
- The procedure used can be applied to other algorithms and sectors other than healthcare.
- This exercise illustrates the need for fairness as a key consideration when designing ML systems.

Limitations

• Other sources of bias are not considered.

The dataset is unbalanced (12.3% Black patients and 87.7% White patients).

Other ethnicities are not considered (intersectional fairness?)⁴

4. Crenshaw, Kimberle (1989). Demarginalizing the Intersection of Race and Sex: A Black Feminist Critique of Antidiscrimination Doctrine, Feminist Theory and Antiracist Politics. _The University of Chicago Legal Forum_140:139-167.

THANKS!

Questions?

Credits

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>