POPULATION-LEVEL PREDICTION OF TYPE 2 DIABETES FROM CLAIMS DATA AND ANALYSIS OF RISK FACTORS

KORBINIAN KOCH OCTOBER 1st 2021

PAPER

Big Data Volume 3 Number 4, 2015 Mary Ann Liebert, Inc. DOI: 10.1089/big.2015.0020

ORIGINAL ARTICLE

Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors

*and Rahul

Narges Razavian,¹ Saul Blecker,² Ann Marie Schmidt,³ Aaron Smith-McLallen,⁴ Somesh Nigam,⁴ and David Sontao^{1,*}

Abstract

We present a new approach to population health, in which data-driven predictive models are learned for outcomes such as type 2 diabetes. Our approach enables risk assessment from readily available electronic claims data on large populations, without additional screening cost. Proposed model uncovers early and late-stage risk factors. Using administrative claims, pharmacy records, healthcare utilization, and laboratory results of 4.1 million individuals between 2005 and 2009, an initial set of 42,000 variables were derived that together describe the full health status and history of every individual. Machine learning was then used to methodically enhance predictive variable set and fit models predicting onset of type 2 diabetes in 2009-2011, 2010-2012, and 2011-2013. We compared the enhanced model with a parsimonious model consisting of known diabetes risk factors in a real-world environment, where missing values are common and prevalent. Furthermore, we analyzed novel and known risk factors emerging from the model at different age groups at different stages before the onset. Parsimonious model using 21 classic diabetes risk factors resulted in area under ROC curve (AUC) of 0.75 for diabetes prediction within a 2-year window following the baseline. The enhanced model increased the AUC to 0.80, with about 900 variables selected as predictive (p < 0.0001 for differences between AUCs). Similar improvements were observed for models predicting diabetes onset 1-3 years and 2-4 years after baseline. The enhanced model improved positive predictive value by at least 50% and identified novel surrogate risk factors for type 2 diabetes, such as chronic liver disease (odds ratio [OR] 3.71), high alanine aminotransferase (OR 2.26), esophageal reflux (OR 1.85), and history of acute bronchitis (OR 1.45). Liver risk factors emerge later in the process of diabetes development compared with obesity-related factors such as hypertension and high hemoglobin A1c. In conclusion, population-level risk prediction for type 2 diabetes using readily available administrative data is feasible and has better prediction performance than classical diabetes risk prediction algorithms on very large populations with missing data. The new model enables intervention allocation at national scale guickly and accurately and recovers potentially novel risk factors at different stages before the disease onset.

Key words: big data analytics; data mining; machine learning; predictive analytics; risk assessment; disease prediction; longitudinal study

ORONTO

UNIVERSITY OF

Introduction

The recent availability of the electronic health record and prediction of healthcare utilization and cost.¹⁴ and claims datasets offers an unprecedented opportu-

readmission models,4,5 disease onset prediction,6-13 Type 2 diabetes is a global public health challenge

Some of the slides are inspired by **David Sontag**'s MIT lecture 'Machine Learning for Healthcare'. Content from his lecture will be indicated with:

Sontag, 2019

David is a great lecturer! Check out his course at:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-s897machine-learning-for-healthcare-spring-2019/lecture-notes/index.htm

DIABETES PREVALENCE

COST OF DIABETES

1 in 7 health care dollars is spent in treating diabetes and its complications

American Diabetes Association, 2020

⇒ detect at-risk population early and intervene

https://www.diabetes.org/resources/statistics/cost-diabetes

TRADITIONAL RISK ASSESSMENT FORM

			🔀 Finnish Diabetes Association		
TYPE 2 DIABETES RISK ASSESSMENT FORM					
Circle the right alternative and add up your points.					
1. Age		6. Hav	6. Have you ever taken medication for high		
0 p. Under 45 years	. Under 45 years		blood pressure on regular basis?		
2 p. 45–54 years					
3 p. 55–64 years		0 p.	No		
4 p. Over 64 years		2 p.	Yes		
2. Body-mass index		7. Hav	e you ever been found to have high blood		
(See reverse of form) glucose (eg in a health examination, during an			e (eg in a health examination, during an		
0 p. Lower than 25 kg/m ²		illness	illness, during pregnancy)?		
1 p. 25–30 kg/m ²					
3 p. Higher than 30 kg	/m²	0 p.	No		
1000 and an 12		5 p.	Yes		
3. Waist circumference me	asured below the ribs				
(usually at the level of the	(usually at the level of the navel) 8. Have any of the members of your immediate				
MEN	WOMEN	family	or other relatives been diagnosed with		
0 p. Less than 94 cm	Less than 80 cm	diabet	es (type 1 or type 2)?		
3 p. 94–102 cm	80–88 cm				
4 p. More than 102 cm	More than 88 cm	0 p.	No		
		3 p.	Yes: grandparent, aunt, uncle or first		

Test designed by Professor Jaakko Tuomilehto, Department of Public Health, University of Helsinki, and Jaana Lindström, MFS, National Public Health Institute.

Finnish Diabetes Association, https://www.diabetes.fi/files/502/eRiskitestilomake.pdf

DIABETES 2 RISK PREDICTION MODELS

- ARIC
- KORA
- FRAMINGHAM
- AUSDRISC
- FINDRISC
- San Antonio Model

REPLACING QUESTIONNAIRES WITH CLAIMS DATA

- Claims data = data that the insurance company has (invoices, tests, ...)
- Readily available
- No time and cost intensive screening at doctors office necessary
- Immediately available and always up-to-date (effortless 're-taking')
- But: new dangers introduced with ML approach (to be discussed later)

REPLACING QUESTIONNAIRES WITH ML MODELS

⇒ ML must find surrogates for missing features

PREDICTION TIMEFRAMES

Sontag, 2019

DATA TRANSFORMATION

TIME BUCKETING

Sontag, 2019

LOGISTIC REGRESSION

MODEL

BASELINE: TRADITIONAL RISK FACTORS

- ARIC
- KORA
- FRAMINGHAM
- AUSDRISC
- FINDRISC
- San Antonio Model

age	hypertension	14
gender obesity	HDL-Cholesterin	established features

- 67% training set
- 33% validation set
- hyperparameter search on training set with 5-fold cross-validation
- $\lambda = [0.0001, 0.001, 0.1, 1, 10]$
- Reported: AUC, Positive Predictive Value (PPV)

PIPELINE: FULL MODEL

PIPELINE: BASELINE MODEL

RESULTS: ROC/AUC

Razavian et al., 2015

POSITIVE PREDICTIVE VALUE (PPV) VS. SENSITIVITY (TPR)

PPV = True Positives
All Positives

0000000000()()()()

100 % sensitivity (TPR)

97.9% specificity (TNR)

50 % **PPV**

Sontag, 2019

ODDS RATIO (OR)

RESULTS: RISK FACTORS AND OR

1-year gap

Variable type	Variable evaluation period ^a	Variable description	OR (95% CI)
ICD9 history	Entire history	Impaired fasting glucose (ICD9-790.21)	4.17 (3.87 4.49)
	Entire history	Abnormal glucose NEC (ICD9-790.29)	4.07 (3.76 4.41)
	Entire history	Hypertension (ICD9-401)	3.28 (3.17 3.39)
	Entire history	Obstructive sleep apnea (ICD9-327.23)	2.98 (2.78 3.20)
	Entire history	Obesity (ICD9 278)	2.88 (2.75 3.02)
	Entire history	Abnormal blood chemistry (ICD9-790.6)	2.49 (2.36 2.62)
	Entire history	Hyperlipidemia (ICD9 272.4)	2.45 (2.37 2.53)
	Entire history	Shortness of breath (ICD9-786.05)	2.09 (1.99 2.19)
	Entire history	Esophageal reflux (ICD9-530.81)	1.85 (1.78 1.93)
	Entire history	Acute bronchitis (ICD9-466.0)	1.44 (1.37 1.50)

RESULTS: RISK FACTORS AND OR

1-year gap

Variable type	Variable evaluation period ^a	Variable description	OR (95% CI)
Laboratory test	Entire history	Hemoglobin A1c/hemoglobin.total— high (LOINC-4548-4)	5.75 (5.42 6.10)
	Past 2 years	Glucose—high (LOINC-2345-7)	4.05 (3.89 4.21)
	Past 2 years	Hemoglobin A1c/hemoglobin.total— request for test	3.42 (3.27 3.58)
	Entire history	Hemoglobin A1c/hemoglobin.total— request for test	3.13 (3.00 3.26)
	Entire history	Cholesterol.In HDL—low (LOINC-2085- 9)	2.78 (2.66 2.92)
	Entire history	Cholesterol.total/cholesterol.In HDL— high (LOINC-9830-1)	2.29 (2.19 2.40)
	Entire history	Cholesterol.In VLDL—request for test (LOINC-13458-5)	2.23 (2.13 2.33)
	Entire history	Carbon dioxide—request for test (LOINC-2028-9)	1.58 (1.53 1.64)
	Past 2 years	Glomerular filtration rate/1.73 Sq. M.Predicted.Black—request for test (LOINC-48643-1)	1.58 (1.52 1.64)

Razavian et al., 2015

RESULTS: RISK FACTORS AND OR

1-year gap

Variable type	Variable evaluation period ^a	Variable description	OR (95% CI)
NDC medications	Past 2 years	Medication group: antiarthritics	1.43 (1.36 1.50)
	Entire history	Medication group: antiarthritics	1.41 (1.35 1.48)
Healthcare utilization	Entire history	Procedure group: routine chest X-ray	1.96 (1.89 2.03)
	Entire history	Dental coverage = yes	1.47 (1.41 1.53)
	Entire history	Service place: emergency room—hospital	1.32 (1.28 1.37)
	Entire history	Specialty code: independent laboratory	1.18 (1.14 1.22)
	Entire history	Routine medical examination (ICD9 V700)	0.85 (0.82 0.88)
	Entire history	Routine gynecological examination (ICD9 V7231)	0.84 (0.81 0.87)
	Entire history	Routine child health examination (ICD9 V202)	0.10 (0.09 0.12)

Razavian et al., 2015

TOP 100 LAB TESTS OVER TIME (ABS. COUNT)

Time (01/2005 - 01/2014)

© Narges Razavian, adapted from Sontag, 2019

STRENGTHS AND WEAKNESSES

- + largest Diabetes 2 risk prediction study in terms of # features and cohort size
- + immediate population-level results and good performance (as good as before)
- + deployed at Independence Blue Cross
- + allows for prioritization of beneficiaries
- does not work for recently enrolled beneficiaries
- no onset estimation (when instead of if)
- odds ratio ≠ learned weights (are they identical?)
- performance tested in same time span (susceptible to non-stationarity)
- susceptible to dataset shift also in the future

QUESTIONS

