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ANALYSIS OF RISK FACTORS
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DISCLAIMER
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Some of the slides are inspired by David Sontag's MIT lecture 'Machine Learning 
for Healthcare'. Content from his lecture will be indicated with: 

Sontag, 2019

David is a great lecturer! Check out his course at:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-s897-
machine-learning-for-healthcare-spring-2019/lecture-notes/index.htm

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-s897-machine-learning-for-healthcare-spring-2019/lecture-notes/index.htm
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-s897-machine-learning-for-healthcare-spring-2019/lecture-notes/index.htm


DIABETES PREVALENCE

Sontag, 2019
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COST OF DIABETES
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1 in 7 health care dollars is spent in treating 
diabetes and its complications

American Diabetes Association, 2020

https://www.diabetes.org/resources/statistics/cost-diabetes

⇒ detect at-risk population early and intervene



TRADITIONAL RISK ASSESSMENT FORM

Finnish Diabetes Association, https://www.diabetes.fi/files/502/eRiskitestilomake.pdf
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DIABETES 2 RISK PREDICTION MODELS
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• ARIC 

• KORA 

• FRAMINGHAM 

• AUSDRISC 

• FINDRISC 

• San Antonio Model



REPLACING QUESTIONNAIRES WITH CLAIMS DATA
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• Claims data = data that the insurance company has (invoices, tests, …)

• Readily available

• No time and cost intensive screening at doctors office necessary

• Immediately available and always up-to-date (effortless 're-taking')

• But: new dangers introduced with ML approach (to be discussed later)

adapted from Sontag, 2019



REPLACING QUESTIONNAIRES WITH ML MODELS
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⇒ ML must find surrogates for missing features

Questionnaire Claims Data

Age

e.g. Lisinopril prescription

¯\_(ツ)_/¯



UTILIZED DATA

Sontag, 2019
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2009 2010 2011 2012 2013

PREDICTION TIMEFRAMES

11

Feature Construction Prediction Window

Sontag, 2019

Feature Construction Prediction Window

Feature Construction Prediction Window



LABELING
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adapted from Razavian et al., 2015
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LABELING
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adapted from Razavian et al., 2015
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LABELING
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adapted from Razavian et al., 2015
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DATA TRANSFORMATION
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adapted from Sontag, 2019



TIME BUCKETING

17

Sontag, 2019

+ +
past 6 monthspast 24 monthsall time

42.000 features



LOGISTIC REGRESSION
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MODEL
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L1-regularized logistic regression

built-in feature selection
sparse solution

optimize predictive performance



BASELINE: TRADITIONAL RISK FACTORS
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• ARIC 

• KORA 

• FRAMINGHAM 

• AUSDRISC 

• FINDRISC 

• San Antonio Model

age

gender

obesity

hypertension

HDL-Cholesterin

…

14 
established 

features



METHOD
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• 67% training set

• 33% validation set

• hyperparameter search on training set with 5-fold cross-validation 

• λ = [0.0001, 0.001, 0.1, 1, 10]

• Reported: AUC, Positive Predictive Value (PPV)



PIPELINE: FULL MODEL
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time series data labeling and selection transforming to fixed size

model fitting +
hyperparam searchsplitting
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evaluation of 
AUC and PPV

42000



PIPELINE: BASELINE MODEL
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time series data labeling and selection established features

model fitting +
hyperparam searchsplitting

tr
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n
va

l

evaluation of 
AUC and PPV

14



RESULTS: ROC/AUC

24

Razavian et al., 2015

967 non-zero weight features 769 non-zero weight features 538 non-zero weight features



POSITIVE PREDICTIVE VALUE (PPV) VS. SENSITIVITY (TPR)
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100 % sensitivity (TPR)
PPV   =

True Positives

All Positives 97.9 % specificity (TNR)

50 % PPV



RESULTS: PPV
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Sontag, 2019

1-year gap



ODDS RATIO (OR)
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Diabetic Non-diabetic

X

not X

A B

C D

Odds ratio    =

Odds that diabetic 
person has X (A/C)

Odds that non-diabetic 
person has X (B/D)



RESULTS: RISK FACTORS AND OR
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Razavian et al., 2015

1-year gap



RESULTS: RISK FACTORS AND OR
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Razavian et al., 2015

1-year gap



RESULTS: RISK FACTORS AND OR
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Razavian et al., 2015

1-year gap



TOP 100 LAB TESTS OVER TIME (ABS. COUNT)
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© Narges Razavian, adapted from Sontag, 2019
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STRENGTHS AND WEAKNESSES
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+  largest Diabetes 2 risk prediction study in terms of # features and cohort size

+  immediate population-level results and good performance (as good as before)

+  deployed at Independence Blue Cross

+  allows for prioritization of beneficiaries

 -   does not work for recently enrolled beneficiaries

 -   no onset estimation (when instead of if)

 -   odds ratio ≠ learned weights (are they identical?)

 -   performance tested in same time span (susceptible to non-stationarity)

 -   susceptible to dataset shift also in the future



QUESTIONS
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