Clustering Longitudinal Clinical Marker Trajectories from Electronic Health Data: Applications to Phenotyping and Endotype Discovery Peter Schulam, Fredrick Wigley, Suchi Saria

Cait Harrigan

ML for health, October 2021

Disease subtyping is an important clinical task; many diseases have distinct subtypes that may display differential treatment response, progression behaviours, cost of care, etc.

Disease subtyping is an important clinical task; many diseases have distinct subtypes that may display differential treatment response, progression behaviours, cost of care, etc.

Particularly useful for complex, systemic diseases

- Autism
- Cardiovascular disease
- Autoimmune disorders
- Scleroderma (this paper)

¹Mayo Clinic ²American College of Rheumatology

 $\bullet\,$ Rare - affects 75,000 to 100,000 people in the U.S., mostly women between the ages of 30 and 50. 2

- Rare affects 75,000 to 100,000 people in the U.S., mostly women between the ages of 30 and 50. $^{\rm 2}$
- Results in hardening of skin, blood vessels

- Rare affects 75,000 to 100,000 people in the U.S., mostly women between the ages of 30 and 50. $^{\rm 2}$
- Results in hardening of skin, blood vessels
- Immune involvement common to have autoimmune co-morbidities

- $\bullet\,$ Rare affects 75,000 to 100,000 people in the U.S., mostly women between the ages of 30 and 50. 2
- Results in hardening of skin, blood vessels
- Immune involvement common to have autoimmune co-morbidities
- Complications in circulation, blood pressure, fibrosis of organ tissue (especially lung, heart)

²American College of Rheumatology

¹Mayo Clinic

Disease trajectory subtyping

EHR data often contains illness severity markers that are routinely collected over the course of patient care.

Disease trajectory subtyping

EHR data often contains illness severity markers that are routinely collected over the course of patient care.

For scleroderma, some examples are:

- Total Skin Score (TSS) measures fibrosis
- Percent of predicted forced vital capacity (pFVC) measures restricted lung capacity
- Percent of predicted diffusing capacity (pDLCO) measures O₂ diffusion into blood
- Right ventricular systolic pressure (RVSP) measures BP into arteries of the lung

These characterize a *disease activity trajectory*.

Disease trajectory subtyping

EHR data often contains illness severity markers that are routinely collected over the course of patient care.

For scleroderma, some examples are:

- Total Skin Score (TSS) measures fibrosis
- Percent of predicted forced vital capacity (pFVC) measures restricted lung capacity
- Percent of predicted diffusing capacity (pDLCO) measures O₂ diffusion into blood
- Right ventricular systolic pressure (RVSP) measures BP into arteries of the lung

These characterize a *disease activity trajectory*. Assuming patients that cluster share the same disease subtype, we can infer what the prototypical trajectory looks like for each subtype.

Goals:

Goals:

• Data is rarely regularly sampled

Goals:

- Data is rarely regularly sampled
- Disease severity is difficult to infer from ICD-9 codes

Goals:

- Data is rarely regularly sampled
- Disease severity is difficult to infer from ICD-9 codes
- Data is collected over the course of years to decades

- Data is rarely regularly sampled
- Disease severity is difficult to infer from ICD-9 codes
- Data is collected over the course of years to decades

Goals:

• Make use of time-indexed observations

- Data is rarely regularly sampled
- Disease severity is difficult to infer from ICD-9 codes
- Data is collected over the course of years to decades

Goals:

- Make use of time-indexed observations
- Make use of illness severity markers

- Data is rarely regularly sampled
- Disease severity is difficult to infer from ICD-9 codes
- Data is collected over the course of years to decades

Goals:

- Make use of time-indexed observations
- Make use of illness severity markers
- Account for nuisance variability

Covariate-dependent

- Covariate-dependent
- Individual-specific long-term

- Covariate-dependent
- Individual-specific long-term
- Individual-specific short-term

Generative modeling: set up the form of the model, then fit parameters to best explain the data.

Generative modeling: set up the form of the model, then fit parameters to best explain the data.

Schulam et al.: use EM to compute MAP estimates of all the parameters.

E-step: estimate posterior distribution over z_i for each individual. $q_i(z_i) = p(z_i|y_i, \beta_{1:G}, \pi_{1:G}, B, t_i, x_i)$

M-step: update parameters via maximum likelihood. $L_i(\Theta^{\tau+1}|\Theta^{\tau}) = \mathbb{E}_{q_i}[logp(y_i|z_i, \beta_{1:G}^{\tau+1}, B^{\tau+1}, t_i, x_i)]$, where $\Theta = \{\beta_{1:G}, \pi_{1:G}, B\}$

Main Idea

Compute parameter updates st. joint likelihood $\prod_{i=1}^{M} p(y_i | \beta_{1:G}, \pi_{1:G}, B, t_i, x_i) p(\pi_{1:G}) \prod_{g=1}^{G} p(\beta_g) p(B) \text{ is maximized}$

Use BIC to select number of subtypes G

Cait Harrigan

Clustering trajectories in EHR data

Covariate-dependent nuisance variability

Individual-specific long-term nuisance variability

Individual-specific short-term nuisance variability

This looks kind of like a topic model.

Cait Harrigan

Clustering trajectories in EHR data

CSC2541 17 / 26

• Authors show that it's useful to cluster using all 3 levels of nuisance variable by comparing with restricted subsets of models

S-marker	C+G	C+G+L	PSM
TSS	5.32 ± 0.18	5.41 ± 0.07	$*4.43 \pm 0.14$
pFVC	9.27 ± 0.49	9.34 ± 0.46	$*7.69 \pm 0.39$
pDLCO	15.03 ± 1.82	15.13 ± 1.93	14.08 ± 1.77
RVSP	12.21 ± 0.50	12.11 ± 0.44	$^*10.89 \pm 0.27$

Table 1: RMSE with standard errors for s-marker prediction. Bold shows best performance on s-marker; * shows statistical significance ($p \le 0.05$).

C: covariates, G: group, L: individual long-term effects

- Authors show that it's useful to cluster using all 3 levels of nuisance variable by comparing with restricted subsets of models
- Describe distinct subtypes for scleroderma some that (A) have a steady, linear progression, (B) decline quickly within the first five years and then stabilize, and (C) are stable for the first five to ten years and then decline rapidly.

CSC2541 21 / 26

Figure 3: Discovered subtypes for all four s-markers. Panel (A) shows pFVC, panel (B) shows TSS, panel (C) shows pDLCO, and panel (D) shows RVSP. Prototypical s-marker trajectories are shown in black, and individuals sampled from the subtype are shown in color. Colored lines show the individualized s-marker trajectory, and colored points show the observed s-markers.

- Useful for clinical hypothesis generation
- Patient stratification, treatment decision making implications
- Explicit handling of nuisance variability
- Model is relatively interpretable Baysean posteriors yield uncertainty estimates

• Little biological interpretation of discovered subtypes

• You can always find clusters in a clustering task!

- Little biological interpretation of discovered subtypes
 - You can always find clusters in a clustering task!
- Don't show that the "nuisance variability" parameters actually capture noise.

- Little biological interpretation of discovered subtypes
 - You can always find clusters in a clustering task!
- Don't show that the "nuisance variability" parameters actually capture noise.
- Might have been valuable to interpret population covariates alongside subtyping.
 - Is it possible to map known predispositions to any particular trajectory subtypes?
 - Can you predict subtype membership for a patient early-on?

CSC2541 25 / 26

Interesting to see a topic modelling-eqsue approach for longitudinal data

Interesting to see a topic modelling-eqsue approach for longitudinal data

This was a relatively early paper on doing clustering with EHR timeseries. There is no strict concept of distances between patient trajectories, which has been developed a lot since.