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Disease trajectory subtyping

Disease subtyping is an important clinical task; many diseases have
distinct subtypes that may display differential treatment response,
progression behaviours, cost of care, etc.

Particularly useful for complex, systemic diseases

Autism

Cardiovascular disease

Autoimmune disorders

Scleroderma (this paper)
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Scleroderma

Scleroderma results from an overproduction and accumulation of collagen
in body tissues. 1

Rare - affects 75,000 to 100,000 people in the U.S., mostly women
between the ages of 30 and 50. 2

Results in hardening of skin, blood vessels

Immune involvement - common to have autoimmune co-morbidities

Complications in circulation, blood pressure, fibrosis of organ tissue
(especially lung, heart)

1Mayo Clinic
2American College of Rheumatology
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Disease trajectory subtyping

EHR data often contains illness severity markers that are routinely
collected over the course of patient care.

For scleroderma, some examples are:

Total Skin Score (TSS) - measures fibrosis

Percent of predicted forced vital capacity (pFVC) - measures
restricted lung capacity

Percent of predicted diffusing capacity (pDLCO) - measures O2

diffusion into blood

Right ventricular systolic pressure (RVSP) - measures BP into arteries
of the lung

These characterize a disease activity trajectory. Assuming patients that
cluster share the same disease subtype, we can infer what the prototypical
trajectory looks like for each subtype.
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Challenges in clustering longitudinal data

Challenges:

Data is rarely regularly sampled

Disease severity is difficult to
infer from ICD-9 codes

Data is collected over the course
of years to decades

Goals:

Make use of time-indexed
observations

Make use of illness severity
markers

Account for nuisance variability
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Nuisance Variables

nuisance variability3: a random variable that is fundamental to the
probabilistic model, but that is of no particular interest in itself

Covariate-dependent

Individual-specific long-term

Individual-specific short-term

3Wikipedia
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Probabilistic modeling

Generative modeling: set up the form of the model, then fit parameters to
best explain the data.

Schulam et al.: use EM to compute MAP estimates of all the parameters.

Cait Harrigan Clustering trajectories in EHR data CSC2541 9 / 26



Probabilistic modeling

Generative modeling: set up the form of the model, then fit parameters to
best explain the data.

Schulam et al.: use EM to compute MAP estimates of all the parameters.

Cait Harrigan Clustering trajectories in EHR data CSC2541 9 / 26



EM algorithm

E-step: estimate posterior distribution over zi for each individual.
qi (zi ) = p(zi |yi , β1:G , π1:G ,B, ti , xi )
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EM algorithm

M-step: update parameters via maximum likelihood.
Li (Θτ+1|Θτ ) = Eqi [logp(yi |zi , βτ+1

1:G ,Bτ+1, ti , xi )], where Θ = {β1:G , π1:G ,B}
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Main Idea

Compute parameter updates st. joint likelihood∏M
i=1 p(yi |β1:G , π1:G ,B, ti , xi )p(π1:G )

∏G
g=1 p(βg )p(B) is maximized
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Graphical model

Use BIC to select number of subtypes G
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Graphical model
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Graphical model

This looks kind of like a topic model.
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Graphical model
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Graphical model
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Results

Authors show that it’s useful to cluster using all 3 levels of nuisance
variable by comparing with restricted subsets of models
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Results

C: covariates, G: group, L: individual long-term effects
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Results

Authors show that it’s useful to cluster using all 3 levels of nuisance
variable by comparing with restricted subsets of models

Describe distinct subtypes for scleroderma - some that (A) have a
steady, linear progression, (B) decline quickly within the first five
years and then stabilize, and (C) are stable for the first five to ten
years and then decline rapidly.
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Results
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Implications

Useful for clinical hypothesis generation

Patient stratification, treatment decision making implications

Explicit handling of nuisance variability

Model is relatively interpretable - Baysean posteriors yield uncertainty
estimates
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Limitations

Little biological interpretation of discovered subtypes

You can always find clusters in a clustering task!

Don’t show that the ”nuisance variability” parameters actually
capture noise.

Might have been valuable to interpret population covariates alongside
subtyping.

Is it possible to map known predispositions to any particular trajectory
subtypes?
Can you predict subtype membership for a patient early-on?
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Conclusions

Interesting to see a topic modelling-eqsue approach for longitudinal data

This was a relatively early paper on doing clustering with EHR timeseries.
There is no strict concept of distances between patient trajectories, which
has been developed a lot since.
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