Recurrent Neural Networks for Multivariate Time Series with Missing Values

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag & Yan Liu

Aslesha Pokhrel, Sujay Nagaraj

Why do we care?

Multivariate time-series data is prevalent in a wide variety of fields:

Health care (ICU, wearables)

Why do we care?

Multivariate time-series data is prevalent in a wide variety of fields:

- Health care (ICU, wearables)
- Economics,
- Geoscience

Problem

Missing values

- Different frequencies
- Device malfunction
- Data Corruption
- Human errors
- Intentional

Baseline Approaches

Inadequate samples when the missing rate is high.

Data imputation - Methods such as smoothing, interpolation and spline are agnostic to the variable correlation and do not capture complex pattern.

Better methods - Spectral analysis, kernel methods, EM algorithm, matrix completion and matrix factorization

averaging data

Omit the missing data -

Multiple imputation and

Problem

- Assumptions of imputation method often not satisfied:
 - Small missing rate
 - Missing at random
- Results in a two-step process where imputation and prediction are separated
 - Missing patterns not effectively explored

Informative Missingness

- Missing pattern correlated with the target labels
- Provide information about labels in the supervised learning tasks

Missingness in health data

- Missing value of a variable tends to be close to some default value
 - Homeostasis
- Influence of the input variables that has been missing for a while will fade away over time

RNN

- Models sequential data
- Auto-regressive
- Vanilla RNN suffer from vanishing gradient problem
 GRU mitigates this problem

Input

value

 $\mathbf{X} = \begin{bmatrix} 12 & 10 & 11 & NA & 13 \\ 6 & NA & 7 & NA & 8 \end{bmatrix}$ $\mathbf{s} = \begin{bmatrix} 0 & 0.5 & 1.0 & 1.5 & 2.0 \end{bmatrix}$

 $\mathbf{X} = \begin{bmatrix} 12 & 10 & 11 & NA & 13 \\ 6 & NA & 7 & NA & 8 \end{bmatrix}$ $\mathbf{s} = \begin{bmatrix} 0 & 0.5 & 1.0 & 1.5 & 2.0 \end{bmatrix}$

 $m_t^d = \begin{cases} 1, & \text{if } x_t^d \text{ is observed} \\ 0, & \text{otherwise} \end{cases}$

 $\mathbf{X} = \begin{bmatrix} 12 & 10 & 11 & NA & 13 \\ 6 & NA & 7 & NA & 8 \end{bmatrix}$ $\mathbf{s} = \begin{bmatrix} 0 & 0.5 & 1.0 & 1.5 & 2.0 \end{bmatrix}$ $\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Time Interval

value

 $\mathbf{X} = \begin{vmatrix} 12 & 10 & 11 & NA & 13 \\ 6 & NA & 7 & NA & 8 \end{vmatrix}$ $\mathbf{s} = \begin{bmatrix} 0 & 0.5 & 1.0 & 1.5 & 2.0 \end{bmatrix}$ $\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ $\delta_t^{d} = \begin{cases} s_t - s_{t-1} + \delta_{t-1}^{d}, & t > 1, \ m_{t-1}^{d} = 0\\ s_t - s_{t-1}, & t > 1, \ m_{t-1}^{d} = 1\\ 0, & t = 1 \end{cases}$

Time Interval

 $\mathbf{X} = \begin{bmatrix} 12 & 10 & 11 & NA & 13 \\ 6 & NA & 7 & NA & 8 \end{bmatrix}$ $\mathbf{s} = \begin{bmatrix} 0 & 0.5 & 1.0 & 1.5 & 2.0 \end{bmatrix}$ $\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ $\boldsymbol{\Delta} = \begin{bmatrix} 0.0 & 0.5 & 0.5 & 0.5 & 1.0 \\ 0.0 & 0.5 & 1.0 & 0.5 & 1.0 \end{bmatrix}$

$z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)$ update gate

Tradeoff between old hidden state and candidate hidden state

$$\gamma_t = \exp\{-\max \{\hat{x}_t^d - \max \{\hat{x}_t^d - m_t^d x_t^d + (1 + 1)\}\}$$

Hidden State Decay

 $ax(0, W_{\gamma}\delta_t + b_{\gamma})\}$ $-m_t^d)\left(\gamma_{x_t}^d x_{t'}^d + (1-\gamma_{x_t}^d)\tilde{x}^d\right)$

$$\gamma_t = \exp\{-\max \{\hat{x}_t^d - m_t^d x_t^d + (1 + 1)\}\}$$

Hidden State Decay

 $ax(0, W_{\gamma}\delta_t + b_{\gamma})\}$ $(\gamma_{x_t}^d x_{t'}^d + (1 - \gamma_{x_t}^d) \tilde{x}^d)$

 $\gamma_t = \exp\{-\max(0, W_\gamma \delta_t + b_\gamma)\}$ $\hat{x}_{t}^{d} = m_{t}^{d} x_{t}^{d} + (1 - m_{t}^{d}) \left(\gamma_{x_{t}}^{d} x_{t'}^{d} + (1 - \gamma_{x_{t}}^{d}) \tilde{x}^{d}\right)$

Mask Vector Inputs [000111000]

 $\gamma_t = \exp\{-\max(0, W_\gamma \delta_t + b_\gamma)\}$ $\hat{x}_{t}^{d} = m_{t}^{d} x_{t}^{d} + (1 - m_{t}^{d}) \left(\gamma_{x_{t}}^{d} x_{t'}^{d} + (1 - \gamma_{x_{t}}^{d}) \tilde{x}^{d}\right)$

GRU UpdatesGRU-D Updates
$$r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)$$
 $r_t = \sigma(W_r \hat{x}_t + U_r \hat{h}_{t-1} + V_r m_t + b_r)$ $z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)$ $z_t = \sigma(W_z \hat{x}_t + U_z \hat{h}_{t-1} + V_z m_t + b_z)$ $\tilde{h}_t = \tanh(W x_t + U(r_t \odot h_{t-1}) + b)$ $\tilde{h}_t = \tanh(W \hat{x}_t + U(r_t \odot \hat{h}_{t-1}) + V m_t + b)$ $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$ $h_t = (1 - z_t) \odot \hat{h}_{t-1} + z_t \odot \tilde{h}_t$

GRU UpdatesGRU-D Updates
$$r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)$$
 $r_t = \sigma(W_r \hat{x}_t + U_r \hat{h}_{t-1} + V_r m_t + b_r)$ $z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)$ $z_t = \sigma(W_z \hat{x}_t + U_z \hat{h}_{t-1} + V_z m_t + b_z)$ $\tilde{h}_t = \tanh(W x_t + U(r_t \odot h_{t-1}) + b)$ $\tilde{h}_t = \tanh(W \hat{x}_t + U(r_t \odot \hat{h}_{t-1}) + V m_t)$ $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$ $h_t = (1 - z_t) \odot \hat{h}_{t-1} + z_t \odot \tilde{h}_t$ Input DecayHidden State DecayMask Vector Inputs

 $a_t + b$

GRU-D Updates $r_t = \sigma(W_r \hat{x}_t + U_r \hat{h}_{t-1} + V_r m_t + b_r)$

$$\dot{c}_t + U_z \dot{h}_{t-1} + V_z m_t + b_z)$$

$$V\hat{x}_t + U(r_t \odot \hat{h}_{t-1}) + Vm_t + b)$$

$$(t) \odot \hat{h}_{t-1} + z_t \odot \tilde{h}_t$$

- Logistic Regression, SVM, Random Forest
- Missing values filled with previous observed value
- Missingness masks and time since last observation

Gesture Phase Segmentation

PhysioNet Challenge 2012

Multivariate time series with synthetic missingness introduced - multiclass classification

Multivariate time series ICU records *Binary classification (mortality) *Multiclass classification (4 tasks)

Multivariate time series ICU records *Binary classification (mortality) *Multiclass classification (ICD9 codes, 20 tasks)

Gesture Phase Segmentation

Gesture Phase Segmentation

PhysioNet (Mortality) MODEL

- GRU Mean
- GRU Forward
- GRU Simple
- 🕇 GRU D

MIMIC (Mortality) MODEL

- GRU Mean
- GRU Forward
- GRU Simple

AUROC MODEL GRU - Mean 0.8252 ± 0.011 0.8192 ± 0.013 0.8380 ± 0.008 GRU – Simple 0.8527 ± 0.003 + GRU - D

MIMIC (ICD 9 20 tasks) MODEL

GRU - Mean 0.8162 ± 0.014 GRU – Forward 0.8195 ± 0.004 0.8226 ± 0.010 GRU – Simple 0.8424 ± 0.012 + GRU - D

AUROC

PhysioNet (4 tasks)

- GRU Forward

AUROC

 0.8099 ± 0.011 0.8091 ± 0.008 0.8249 ± 0.010 0.8370 ± 0.012

AUROC

 0.7070 ± 0.001 0.7077 ± 0.001 0.7105 ± 0.001 0.7123 ± 0.003

Strengths

- Scalable
- Extensive evaluation
- Solution to data not missingcompletely-at-random

(b) Performance for predicting mortality on subsampled datasets.

Limitations

Uninformative missingness

 No clear inherent correlation between the missingness pattern and prediction task.

Decay mechanism

• Needs to be explicitly designed for each domain. • Should it always decay?

Unsupervised settings

• Labels are required.

