VECTOR
INSTITUTE

Topics in Machine

Machine
Hea

_earning

Learning for

thcare

Rahul G. Krishnan
Assistant Professor
Computer science & Laboratory Medicine and Pathobiology



Announcements

* Thank you all for handing in your project assignments on time!
* Discussion on how best to help overcome hurdles

* Next assignment:
* October 29 11:59 ET
e Paper summary assignment [15%]



Outline

 Machine learning thus far
e Supervised learning
* Unsupervised learning
* Semi-supervised learning

e Self-supervised learning

e Case study : Histopathology [continued from last time; example in
medical imaging]



Supervised |learning

* Given a dataset, the model parameters are learned via maximum

likelihood estimation
4 )

Score function (high is good, low is bad)
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Deep neural networks typically learned .
using tools that leverage automatic differentiation PyTO rC h




Deep residual neural networks
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Researchers found that deep networks had a hard time

They added a skip-connections between layers:
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Deep Residual Learning for Image Recognition, He et. al, 2015




Limitations of supervised learning

* Deep neural networks have proven very successful in learning useful
representations of image data from large datasets

 Models like AlexNet, ResNet trained on imagenet capture features
useful for multiple different tasks

* For a new task:
* Need fine-grained labels associated with each example

» Standard approach: Use a pre-trained imagenet model and fine-tune on new
dataset

* Self-supervised learning:
* What if we do not need labels to learn good representations?



Unsupervised learning

’ ’ ’ Dataset (N=3)
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Score function (high is good, low is bad)
L(z) = log p(;0)
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Semi-supervised learning

3
0 =argmax ) L(x;0) + L{y1]1;02) + L{ys|ws: 02)
1=1

 Have a combination of labelled and un-labelled data in your dataset




Unsupervised and semi-supervised learning
of high-dimensional images is hard

* Even if there is a small space of concepts unsupervised models of
image data are challenging to build

* Need a good model of each pixel in the image.

* Recently there has been a lot of work in leveraging generative
adversarial networks for this problem

* |dea: Can we build representations without labels and without
modeling each pixel as a random variable?



Self-supervised learning

* Recent (last 4-5 years) development in machine learning

* Principle: Leverage domain knowledge about what kinds of
information the representation should contain when building it

e Learn about self-supervised learning by examples



Notation

Qb * Feature function [Resnet]

* Transformation of an image
T T =T [random crop, rotation, jittering,
color normalization]
* Preserves the identity of the image

. / e Similarity function
sim(k, k") yranenon
* Measure of similarity of two vectors
* Mean squared error, cosine similarity



SSL 1 - Learning with contrastive examples

e A Simple Framework for Contrastive Learning of Visual
Representations, Chen et. al, ICML 2020

* Builds upon earlier work: Unsupervised Feature Extraction by Time-

Contrastive Learning and Nonlinear ICA, Hyvarinen et. al



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/1605.06336.pdf

SIMCLR: Self-supervised learning with
contrastive examples

Maximize agreement

. < > 2 .. .
=i J Randomly sample a mini-batch of datapoints.
0] o
. Minimize loss below
h; <— Representation — h;
Goal: Learn representations that recognize that the class of
fQ) fC) transformations in T preserve identity.

Note: No labels used.

exp(sim(z;, z;)/T
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1 Lpq exp(sim(z;, 1) /7)




How good are the representations?

A Simple Framework for Contrastive Learning of Visual Representations

Food CIFAR10 CIFARI100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 95.3 80.2 48.4 659 600 61.2 84.2 789 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 649 68.8 63.8 83.8 78.7 923 94.1 94.2
Fine-tuned:

SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 92.1 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 670 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 53.7 913 84.8 69.4 64.1 82.7 72.5 92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image
classification datasets, for ResNet-50 (4x ) models pretrained on ImageNet. Results not significantly worse than the best (p > 0.05,
permutation test) are shown in bold. See Appendix B.8 for experimental details and results with standard ResNet-50.



SSL 1 - Learning without contrastive examples

* In the above examples, the quality of representations will depend on
the choice of negative examples used.

e Can we learn without negative examples?

* DINO: Emerging Properties in Self-Supervised Vision Transformers,
Caron et. al, 2021

» Key idea: Instead of comparing the representations with respect to random
negative examples, compare the representation to a different crop of itself



https://arxiv.org/pdf/2104.14294.pdf







Case study : Deep learning for
histopathological image data

* Research by Richard J. Chen
* 3t year Ph.D. Candidate, Harvard University /
BWH, Broad Institute



Histopathological images in the clinical
workflow

* Histopathology: Microscopic examination of tissue to study diseases
and their different presentations,

* Pipeline:
e Surgery, biopsy or autopsy for excision of tissue
* Placed in a fixative to stabilize tissue
* Investigated under a microscope

* Histopathological images are routinely used for clinical diagnoses of
cancer

* Key question: How can we use machine learning to build representations of
histopathological image data?



Slide-Level Supervised Learning (Weak Supervision)
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Lipkova ez al. 2021, In Review



Weakly-Supervised Learning: Finding Needles in Haystacks via Attention
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Attention weights saliently
localize tumor regions in
binary classification tasks
of benign / metastasis

Lu et al. 2021, Nature BME



Current Paradigm is limited by: Clinical Domain Knowledge

* Requires clinical domain knowledge to:
1. label image regions in WSIs with
known morphological phenotypes
(patch-level tasks)
2. Make prognostic decisions from
subjective interpretation of the
entire WSI (slide-level tasks)

* How can we identify new phenotypic
biomarkers?

* What are we missing in current decision-
making that can guide prognosis?
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Current Paradigm is limited by: Clinical Domain Knowledge

SUPERVISED
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Current pipelines for creating representations of whole slide images make use of ResNet50 architectures

pretrained on imagenet.




Self-Supervised Learning: Pixel-Level Annotations are Not Needed!
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Lipkova ez al. 2021, In Review, Ciga et. al

We build upon recent work [Resource and data efficient self supervised learning, Ciga et. al, 2021] who

show that self-supervision yields general purpose
representations of histopathological images



DINO-based Knowledge Distillation for Patch-based Representations

Loss Function: p1log (p2) DINO
p1 p2 ¢ We wanted to study the use of non-contrastive self-supervised learning for
Stop Gradient creating representations
* |nput:
L m ¢ Two crops with color contrasts from the same image
' N | Exponential | EmmS——— * Goal of self-supervised learning:
X\f)evrgge * Teach the network that these two crops are from the same image

v

teacher network via minimizing cross-entropy loss
* Avoid network collapse by having two networks
* Train the student via gradient descent
* Teacher is not trained, weights are updated via exponential
moving average from students
* Does not require negative samples
* Data inductive biases in natural images may not hold in H&E pathology
slides

* Output of student network is trained to match the distribution of

H&E Image Patch X
Chen ¢f al. 2021, In Preparation DINO: Emerging properties in self-supervised vision transformers, Caron et. Al, 2021



DINO-based Knowledge Distillation for Patch-based Representations

Loss Function: p1log (p2) DINO
p1

Output of student network is trained to match the
distribution of teacher network via:

Stop Gradient
' Vision Transformer (VIT) Block ° m|n|m|z|ng Cross_entropy |OSS
sefinax * EMA to update teacher network
"""""""""""""""" * Does not require negative samples
";"\:;"r':ge EIT:#IT:IJ N x Transformer Blocks » Data inductive biases in natural images may
I | I | I not hold in H&E pathology slides

Per-patch FC

Vision Transformer (ViT) used as encoder
* 256 x 256 H&E tissue patches are further
patched as 16 x 16 patch embeddings

0 0 el S
@&&iﬁi?‘éﬁn

H&E Image Patch X
Chen ez al. 2021, In Preparation




Study Design

Small-cell lung cancer (15%)

Usually seen in cells near the
bronchi, small-cell lung cancer is
almost always caused by smoking
and is very aggressive. Only 6% of US
patients with small-cell lung cancer
survive five years after diagnosis,
compared with 21% of those with
non-small-cell lung cancer.

TCGA Lung
Cohortt

® Large cell
carcinoma (15%)

("t—— This type of cancer
can begin in any
part of the lung,

and often grows
and spreads quickly.

® Adenocarcinoma (40%)

This is the most prevalent
form of lung cancer and
usually arises in the cells
lining the alveoli. It is a
common form of lung cancer J
in people who have never

smoked, but is also seen in

smokers.

® Squamous cell
carcinoma (30%) °

These tumours appear °
in the flat cells that line

the inside of the °
airways, usually near

the bronchi. This form °

of the disease is
usually caused by
smoking and is more
common in men than
Rt women. The tumours
TN —— tend to grow slowly.

Experiments:

Organ-specific vs. pan-cancer training
* TCGA Lung (1033 WSIs) vs

Entire TCGA (~8788 WSIs)
Comparisons with SOTA methods

* SimCLR, SimSiam

Slide-Level Tasks:

LUAD vs. LUSC Subtyping
LUAD + LUSC Survival Analysis
TP53 + KRAS Mutation Prediction



