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Announcements

• Thank you all for handing in your project assignments on time! 
• Discussion on how best to help overcome hurdles

• Next assignment: 
• October 29 11:59 ET 
• Paper summary assignment [15%]



Outline

• Machine learning thus far
• Supervised learning
• Unsupervised learning
• Semi-supervised learning

• Self-supervised learning
• Case study : Histopathology [continued from last time; example in 

medical imaging]



Dataset (N=3)

Solve this optimization problem to learn
the model. Often formulated as a minimization

of the negative of the log-likelihood function

Score function (high is good, low is bad)

Supervised learning

• Given a dataset, the model parameters are learned via maximum 
likelihood estimation

Deep neural networks typically learned
using tools that leverage automatic differentiation
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L(y, x) = log p(y|x; ✓)

✓ = argmax
✓

NX

i=1

L(yi, xi)



Deep residual neural networks

Deep Residual Learning for Image Recognition, He et. al, 2015

Researchers found that deep networks had a hard time 
learning the identity function.

They added a skip-connections between layers: 
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hk = �(conv(hk�1)) +
X

j<k�1

hk�j



Limitations of supervised learning

• Deep neural networks have proven very successful in learning useful 
representations of image data from large datasets
• Models like AlexNet, ResNet trained on imagenet capture features 

useful for multiple different tasks
• For a new task: 

• Need fine-grained labels associated with each example
• Standard approach: Use a pre-trained imagenet model and fine-tune on new 

dataset

• Self-supervised learning:
• What if we do not need labels to learn good representations?



Dataset (N=3)

Solve this optimization problem to learn
the model. Often formulated as a minimization

of the negative of the log-likelihood function

Score function (high is good, low is bad)

Unsupervised learning
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✓ = argmax
✓

NX

i=1

L(x)



Dataset (N=3)

Semi-supervised learning
<latexit sha1_base64="QRlFKTdZFTH2TZmCLuq5ispBsxg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJ jkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcOno2p</latexit>x1

<latexit sha1_base64="AR8bw1iLV+h/TJ1WtHIGvCZC5c0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AECKNqg==</latexit>x2
<latexit sha1_base64="oHKEjBPa1NpTI9acyZHKjpoa4aI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOA0yYnd3M9BrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+ci1EZF6wHHM/ZAOlOgLRtFK90/d826x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/lp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaNs7J3Ua7cVUrV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4AEaaNqw==</latexit>x3

<latexit sha1_base64="S9Cu8AKFnK6I/8lMB82XcUuy6Gc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEQJI2q</latexit>y1
<latexit sha1_base64="2CemlM6+NZ4ujdFym/hTPFz7v/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg9YJZwP6JDJULBKFrpPuuf98sVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hOqUTDJp6VeanhC2ZgOeddSRSNu/Mn81Ck5scqAhLG2pZDM1Z8TExoZk0WB7YwojsyyNxP/87ophlf+RKgkRa7YYlGYSoIxmf1NBkJzhjKzhDIt7K2EjaimDG06JRuCt/zyX9I6q3oX1dpdrVK/zuMowhEcwyl4cAl1uIUGNIHBEJ7gBV4d6Tw7b877orXg5DOH8AvOxzcTLI2s</latexit>y3

<latexit sha1_base64="y0H0JRMcAfuXKqJfg67mru6d7TA=">AAACZHicbZFNSysxFIYz40e1enVUXAkSbhGUC2XGigoiiG5cuFC4VaFThzNp2gYzHyRnpGWcP+nOpRt/h2k7oFYPBF7e5xxy8iZMpdDouq+WPTM7N19ZWKwuLf9ZWXXW1m91kinGmyyRiboPQXMpYt5EgZLfp4pDFEp+Fz5ejPjdE1daJPF/HKa8HUEvFl3BAI0VOLmPfY5AT6kPqudHMAhKq/B1FgW5OPWKhwY1BPsMZH5V7A 5OJh179N83fxh4z4PAK2mwvzeNGwY3PnHg1Ny6Oy76U3ilqJGyrgPnxe8kLIt4jEyC1i3PTbGdg0LBJC+qfqZ5CuwRerxlZAwR1+18HFJBd4zTod1EmRMjHbtfJ3KItB5GoekcLa2n2cj8jbUy7B63cxGnGfKYTS7qZpJiQkeJ045QnKEcGgFMCbMrZX1QwND8S9WE4E0/+ae43a97h/WDm4Pa2XkZxwLZIn/JLvHIETkjl+SaNAkjb1bFcqw1691etjfszUmrbZUzG+Rb2dsflD+23w==</latexit>

✓ = argmax
✓

3X

i=1

L(x; ✓) + L(y1|x1; ✓2) + L(y3|x3; ✓2)

• Have a combination of labelled and un-labelled data in your dataset



Unsupervised and semi-supervised learning 
of high-dimensional images is hard

• Even if there is a small space of concepts unsupervised models of 
image data are challenging to build
• Need a good model of each pixel in the image.
• Recently there has been a lot of work in leveraging generative 

adversarial networks for this problem 
• Idea: Can we build representations without labels and without

modeling each pixel as a random variable?



Self-supervised learning

• Recent (last 4-5 years) development in machine learning
• Principle: Leverage domain knowledge about what kinds of

information the representation should contain when building it
• Learn about self-supervised learning by examples



Notation

• Feature function [Resnet]
• Transformation of an image

[random crop, rotation, jittering,
color normalization]
• Preserves the identity of the image

• Similarity function
• Measure of similarity of two vectors
• Mean squared error, cosine similarity
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SSL 1 - Learning with contrastive examples

• A Simple Framework for Contrastive Learning of Visual 
Representations, Chen et. al, ICML 2020
• Builds upon earlier work: Unsupervised Feature Extraction by Time-

Contrastive Learning and Nonlinear ICA, Hyvarinen et. al

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/1605.06336.pdf


SIMCLR: Self-supervised learning with 
contrastive examples

A Simple Framework for Contrastive Learning of Visual Representations

• Composition of multiple data augmentation operations
is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)
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Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ⇠ T and
t0 ⇠ T ) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi 2 Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) = W (2)�(W (1)hi) where � is a ReLU non-
linearity. As shown in section 4, we find it beneficial to
define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-
diction task. Given a set {x̃k} including a positive pair
of examples x̃i and x̃j , the contrastive prediction task
aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define
the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N � 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/kukkvk de-
note the dot product between `2 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

`i,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 [k 6=i] exp(sim(zi, zk)/⌧)
, (1)

where [k 6=i] 2 {0, 1} is an indicator function evaluating to
1 iff k 6= i and ⌧ denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in
previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,
2018); for convenience, we term it NT-Xent (the normalized
temperature-scaled cross entropy loss).
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is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)

 �Representation�!

x

x̃i x̃j

hi hj

zi zj

t ⇠ T t
0 ⇠ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ⇠ T and
t0 ⇠ T ) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi 2 Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) = W (2)�(W (1)hi) where � is a ReLU non-
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aims to identify x̃j in {x̃k}k 6=i for a given x̃i.
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the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N � 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/kukkvk de-
note the dot product between `2 normalized u and v (i.e.
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`i,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 [k 6=i] exp(sim(zi, zk)/⌧)
, (1)

where [k 6=i] 2 {0, 1} is an indicator function evaluating to
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Randomly sample a mini-batch of datapoints. 

Minimize loss below

Goal: Learn representations that recognize that the class of 
transformations in T preserve identity. 

Note: No labels used. 



How good are the representations? 

A Simple Framework for Contrastive Learning of Visual Representations

Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:
SimCLR (ours) 76.9 95.3 80.2 48.4 65.9 60.0 61.2 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 64.9 68.8 63.8 83.8 78.7 92.3 94.1 94.2

Fine-tuned:
SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 92.1 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 91.4 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 53.7 91.3 84.8 69.4 64.1 82.7 72.5 92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image
classification datasets, for ResNet-50 (4⇥) models pretrained on ImageNet. Results not significantly worse than the best (p > 0.05,
permutation test) are shown in bold. See Appendix B.8 for experimental details and results with standard ResNet-50.

2019; Tian et al., 2019) in the linear evaluation setting (see
Appendix B.6). Table 1 shows more numerical compar-
isons among different methods. We are able to use standard
networks to obtain substantially better results compared to
previous methods that require specifically designed archi-
tectures. The best result obtained with our ResNet-50 (4⇥)
can match the supervised pretrained ResNet-50.

Semi-supervised learning. We follow Zhai et al. (2019)
and sample 1% or 10% of the labeled ILSVRC-12 training
datasets in a class-balanced way (⇠12.8 and ⇠128 images
per class respectively). 11 We simply fine-tune the whole
base network on the labeled data without regularization
(see Appendix B.5). Table 7 shows the comparisons of
our results against recent methods (Zhai et al., 2019; Xie
et al., 2019; Sohn et al., 2020; Wu et al., 2018; Donahue &
Simonyan, 2019; Misra & van der Maaten, 2019; Hénaff
et al., 2019). The supervised baseline from (Zhai et al.,
2019) is strong due to intensive search of hyper-parameters
(including augmentation). Again, our approach significantly
improves over state-of-the-art with both 1% and 10% of the
labels. Interestingly, fine-tuning our pretrained ResNet-50
(2⇥, 4⇥) on full ImageNet are also significantly better then
training from scratch (up to 2%, see Appendix B.2).

Transfer learning. We evaluate transfer learning perfor-
mance across 12 natural image datasets in both linear evalu-
ation (fixed feature extractor) and fine-tuning settings. Fol-
lowing Kornblith et al. (2019), we perform hyperparameter
tuning for each model-dataset combination and select the
best hyperparameters on a validation set. Table 8 shows
results with the ResNet-50 (4⇥) model. When fine-tuned,
our self-supervised model significantly outperforms the su-
pervised baseline on 5 datasets, whereas the supervised
baseline is superior on only 2 (i.e. Pets and Flowers). On
the remaining 5 datasets, the models are statistically tied.
Full experimental details as well as results with the standard
ResNet-50 architecture are provided in Appendix B.8.

11The details of sampling and exact subsets can be found in
https://www.tensorflow.org/datasets/catalog/imagenet2012_subset.

7. Related Work
The idea of making representations of an image agree with
each other under small transformations dates back to Becker
& Hinton (1992). We extend it by leveraging recent ad-
vances in data augmentation, network architecture and con-
trastive loss. A similar consistency idea, but for class label
prediction, has been explored in other contexts such as semi-
supervised learning (Xie et al., 2019; Berthelot et al., 2019).

Handcrafted pretext tasks. The recent renaissance of self-
supervised learning began with artificially designed pretext
tasks, such as relative patch prediction (Doersch et al., 2015),
solving jigsaw puzzles (Noroozi & Favaro, 2016), coloriza-
tion (Zhang et al., 2016) and rotation prediction (Gidaris
et al., 2018; Chen et al., 2019). Although good results
can be obtained with bigger networks and longer train-
ing (Kolesnikov et al., 2019), these pretext tasks rely on
somewhat ad-hoc heuristics, which limits the generality of
learned representations.

Contrastive visual representation learning. Dating back
to Hadsell et al. (2006), these approaches learn represen-
tations by contrasting positive pairs against negative pairs.
Along these lines, Dosovitskiy et al. (2014) proposes to
treat each instance as a class represented by a feature vector
(in a parametric form). Wu et al. (2018) proposes to use
a memory bank to store the instance class representation
vector, an approach adopted and extended in several recent
papers (Zhuang et al., 2019; Tian et al., 2019; He et al.,
2019; Misra & van der Maaten, 2019). Other work explores
the use of in-batch samples for negative sampling instead
of a memory bank (Doersch & Zisserman, 2017; Ye et al.,
2019; Ji et al., 2019).

Recent literature has attempted to relate the success of their
methods to maximization of mutual information between
latent representations (Oord et al., 2018; Hénaff et al., 2019;
Hjelm et al., 2018; Bachman et al., 2019). However, it is not
clear if the success of contrastive approaches is determined
by the mutual information, or by the specific form of the
contrastive loss (Tschannen et al., 2019).



SSL 1 - Learning without contrastive examples

• In the above examples, the quality of representations will depend on 
the choice of negative examples used. 
• Can we learn without negative examples?
• DINO: Emerging Properties in Self-Supervised Vision Transformers, 

Caron et. al, 2021
• Key idea: Instead of comparing the representations with respect to random 

negative examples, compare the representation to a different crop of itself

https://arxiv.org/pdf/2104.14294.pdf




DINO 



Case study : Deep learning for 
histopathological image data

• Research by Richard J. Chen
• 3rd year Ph.D. Candidate, Harvard University / 

BWH, Broad Institute



Histopathological images in the clinical 
workflow

• Histopathology: Microscopic examination of tissue to study diseases 
and their different presentations, 
• Pipeline: 

• Surgery, biopsy or autopsy for excision of tissue
• Placed in a fixative to stabilize tissue
• Investigated under a microscope

• Histopathological images are routinely used for clinical diagnoses of 
cancer
• Key question: How can we use machine learning to build representations of 

histopathological image data? 



Slide-Level Supervised Learning (Weak Supervision)

Lipkova et al. 2021, In Review



• Attention weights saliently 
localize tumor regions in 
binary classification tasks  
of benign / metastasis

Weakly-Supervised Learning: Finding Needles in Haystacks via Attention

Lu et al. 2021, Nature BME



Current Paradigm is limited by: Clinical Domain Knowledge

• Requires clinical domain knowledge to:
1. label image regions in WSIs with 

known morphological phenotypes 
(patch-level tasks)

2. Make prognostic decisions from 
subjective interpretation of the 
entire WSI (slide-level tasks)

• How can we identify new phenotypic 
biomarkers? 

• What are we missing in current decision-
making that can guide prognosis?



Current Paradigm is limited by: Clinical Domain Knowledge

Current pipelines for creating representations of whole slide images make use of ResNet50 architectures 
pretrained on imagenet.



Self-Supervised Learning: Pixel-Level Annotations are Not Needed!

Lipkova et al. 2021, In Review, Ciga et. al

We build upon recent work [Resource and data efficient self supervised learning, Ciga et. al, 2021] who 
show that self-supervision yields general purpose 

representations of histopathological images 



DINO-based Knowledge Distillation for Patch-based Representations

DINO
• We wanted to study the use of non-contrastive self-supervised learning for 

creating representations
• Input: 

• Two crops with color contrasts from the same image
• Goal of self-supervised learning: 

• Teach the network that these two crops are from the same image
• Output of student network is trained to match the distribution of 

teacher network via minimizing cross-entropy loss
• Avoid network collapse by having two networks

• Train the student via gradient descent
• Teacher is not trained, weights are updated via exponential 

moving average from students
• Does not require negative samples

• Data inductive biases in natural images may not hold in H&E pathology 
slides

Chen et al. 2021, In Preparation DINO: Emerging properties in self-supervised vision transformers, Caron et. Al, 2021



DINO-based Knowledge Distillation for Patch-based Representations

DINO
• Output of student network is trained to match the 

distribution of teacher network via:
• minimizing cross-entropy loss
• EMA to update teacher network

• Does not require negative samples
• Data inductive biases in natural images may 

not hold in H&E pathology slides
• Vision Transformer (ViT) used as encoder

• 256 x 256 H&E tissue patches are further 
patched as 16 x 16 patch embeddings

Chen et al. 2021, In Preparation



Study Design 

TCGA Lung
Cohort

• Experiments:
• Organ-specific vs. pan-cancer training

• TCGA Lung (1033 WSIs) vs
Entire TCGA (~8788 WSIs)

• Comparisons with SOTA methods
• SimCLR, SimSiam

• Slide-Level Tasks:
• LUAD vs. LUSC Subtyping
• LUAD + LUSC Survival Analysis
• TP53 + KRAS Mutation Prediction


