

Topics in Machine Learning Machine Learning for Healthcare

Rahul G. Krishnan Assistant Professor Computer science & Laboratory Medicine and Pathobiology

Announcements

- Thank you all for handing in your project assignments on time!
 - Discussion on how best to help overcome hurdles
- Next assignment:
 - October 29 11:59 ET
 - Paper summary assignment [15%]

Outline

- Machine learning for imaging
- Case study 1: Cardiology
- Case study 2: Histopathology
- Biases in medical images

- Step 1: Collect a dataset or curate a subset of data with labels from an existing dataset
- Step 2: Learn the model using the dataset
- Step 3: Use the output of the model to build software to help clinicians reach better decisions, faster.
- **Examples**: Logistic regression, random forests, XGBoost, Deep neural networks

• Given a dataset, the model parameters are learned via maximum likelihood estimation

$$\mathcal{L}(y, x) = \log p(y|x; \theta)$$
Score function (high is good, low is bad)

$$\theta = \arg \max_{\theta} \sum_{i=1}^{N} \mathcal{L}(y_i, x_i)$$
Solve this optimization problem to learn
the model. Often formulated as a minimization
of the negative of the log-likelihood function

Deep neural networks typically learned using tools that leverage automatic differentiation

Computer vision

 Computer vision has had a front row seat to the advances in deep learning
 ImageNet Challenge

Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition. leee, 2009.

IM A GENET

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Error rates on Imagenet over time

Neural networks in a slide

- Simplest neural network is a multi-layer perceptron
- Neural networks are known to be universal function approximators

Convolutional neural networks

Capture the fact that we may want representations that are spatially invariant

Deep residual neural networks

Researchers found that deep networks had a hard time learning the identity function.

They added a skip-connections between layers:

$$h_k = \phi(conv(h_{k-1})) + \sum_{j < k-1} h_{k-j}$$

Deep Residual Learning for Image Recognition, He et. al, 2015

Imaging in medicine

- <u>History of Medical Imaging, Bradley et. al, 2008</u>
- Nuclear medicine: Using radiation to see inside the human body
 - X-ray discovered in 1895 (won the Nobel in 1901)
 - CT, PET discovered thereafter
- Magnetic resonance imaging: Mapping resonance in the body to images
- Ultrasound imaging: Mapping high-frequency sound waves to images
- Histopathological imaging: Images of stained tissue samples

Decision making with images

- Ultrasound:
 - Echocardiograms
 - Visualize beating of the heart to assess normal function
 - Abdominal ultrasounds
 - Assess healthy function of abdominal organs
- X-rays:
 - Breast cancer screening
 - Guiding surgery to remove blood clots, insert catheters
 - Friday: Hear from Ruizhi Liao on combining text and chest x-ray data

Technical issues in machine learning for medical imaging

- The general setup is almost always as follows:
 - Collect a large set of images [X]
 - Use notes/clinical variables/expert annotation to come up with labels [Y]
 - Use a deep learning model predict Y from X
- Fairness:
 - <u>Reading Race: AI Recognises Patient's Racial Identity In Medical Images,</u> <u>Banerjee et. al, 2021</u>
- Selection bias:
 - <u>Causality matters in medical imaging, Castro et. al, 2019</u>

Case study 1: Deep learning for echocardiograms

- Sound waves to image the heart
- Why:
 - Check for problems with your valves or chambers
 - Check if heart problems are causing shortness of breath
 - Assess congenital heart defects

MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

A taxonomy of echocardiograms

- Most common: Transthoracic echocardiogram
- Transesophageal echocardiogram
 - Transducer guided down patient's throat
 - Records sound waves bouncing off the heart pumping and interprets them as images
- Doppler echocardiogram
 - Used to assess bloodflow
- Stress echocardiogram
 - Ultrasound after excercise

Case study 1: Predicting cardiac amyloidosis

- <u>Artificial intelligence-enabled fully automated detection of cardiac</u> <u>amyloidosis using electrocardiograms and echocardiograms, Goto et.</u> <u>Al, Nature Communications, 2021</u>
- Cardiac amyloidosis
 - deposition of protein in the heart muscle, can result in heart failure
 - believed to be rare but likely underdiagnosed
 - manifests in both ECGs and echo-cardiography but features are not highly specific and difficult to spot
 - Gold standard: biopsy (costly and risky to patient)

Where machine learning can help

- How can we design a method that:
 - Fits into the clinical workflow for cardiac patients
 - If used, improve underdiagnosis of disease?
- Key-idea: Two-stage approach
 - Step 1: Build ML models from ECG data (readily available at most care providers)
 - Finding: Models have decent accuracy but not enough for conclusive diagnosis
 - Step 2: Build ML models from echocardiogram data
 - Finding: Models outperform human experts
 - Use step 1 to decide which patients should undergo an echocardiogram and apply model from step 2

A multi-center study

	BWH		MGH		UCSF	
	Case	Control	Case	Control	Case	Control
Number of studies	2249	8684	405	437	372	731
Age, years ± SD	69.9 ± 10.4	62.3 ± 13.2	72.9 ± 9.0	73.8 ± 8.8	67.7 ± 12.9	67.5 ± 11.7
Age Groups						
≤30, n (%)	2 (0.1)	97 (1.1)	1 (0.2)	1 (0.2)	2 (0.5)	0 (0.0)
30-50, n (%)	78 (3.5)	1,370 (15.8)	7 (1.7)	6 (1.4)	36 (9.7)	69 (9,4))
50-70, n (%)	901 (40.1)	4548 (52.4)	143 (35.3)	135 (30.9)	136 (36.6)	278 (38.0)
70-90, n (%)	1242 (55.2)	2606 (30.0)	254 (62.7)	295 (67.5)	198 (53.2)	384 (52.5)
>90, n (%)	26 (1.2)	63 (0.7)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
HR, bpm ± SD	76.4 ± 16.7	75.9 ± 18.5	78.6 ± 16.6	75.1 ± 19.8	79.6 ± 18.7	72.2 ± 16.3
Sinus rhythm, n (%)	1,736 (77.2)	8,072 (93.0)	283 (69.9)	371 (84.9)	365 (98.1)	729 (99.7)

Step 1: ECG model

 Results Ok but not considered good enough for evaluating interventions for a rare diagnosis since it will result in a large number of false positives

Step 2: Echocardiogram model

• Performance significantly better when using a richer (but more expensive) data modality

Recall: Metrics

- Positive Predictive Value (PPV): TP/(TP+FP)
 - A high PPV will indicate that a positive result is likely correct
- Sensitivity: TP/(TP+FN)
 - A highly sensitive test will have few-false negatives

Analyzing the combined approach

- ECG model:
 - MGH: PPV 3.9% with Sensitivity 71%
 - BWH: PPV 3.4% with Sensitivity 52.4%
- Echo model:
 - MGH: PPV 32.7% with Sensitivity 66.9%
 - BWH: PPV: 33.4% with Sensitivity 67%
- Combined:
 - MGH: PPV: 76.6% with Sensitivity 47.5%
 - BWH: PPV: 73.9% with Sensitivity 34.8%

Case study 2: Deep learning for histopathological image data

- Research by Richard J. Chen
- 3rd year Ph.D. Candidate, Harvard University / BWH, Broad Institute
- Work in submission

Histopathological images in the clinical workflow

- Histopathology: Microscopic examination of tissue to study diseases and their different presentations,
- Pipeline:
 - Surgery, biopsy or autopsy for excision of tissue
 - Placed in a fixative to stabilize tissue
 - Investigated under a microscope
- Histopathological images are routinely used for clinical diagnoses of cancer
 - Key question: How can we use machine learning to build representations of histopathological image data?

Slide-Level Supervised Learning (Weak Supervision)

Lipkova et al. 2021, In Review

Weakly-Supervised Learning: Finding Needles in Haystacks via Attention

Lu et al. 2021, Nature BME

Current Paradigm is limited by: Clinical Domain Knowledge

- Requires clinical domain knowledge to:
 - label image regions in WSIs with known morphological phenotypes (patch-level tasks)
 - 2. Make prognostic decisions from subjective interpretation of the entire WSI (slide-level tasks)
- How can we identify new phenotypic biomarkers?
- What are we missing in current decisionmaking that can guide prognosis?

Current Paradigm is limited by: Clinical Domain Knowledge

Current pipelines for creating representations of whole slide images make use of ResNet50 architectures pretrained on imagenet.

Self-Supervised Learning: Pixel-Level Annotations are Not Needed!

Lipkova et al. 2021, In Review, Ciga et. al

We build upon recent work [Resource and data efficient self supervised learning, Ciga et. al, 2021] who show that self-supervision yields general purpose representations of histopathological images