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Announcements

• Thank you all for handing in your project assignments on time! 
• Discussion on how best to help overcome hurdles

• Next assignment: 
• October 29 11:59 ET 
• Paper summary assignment [15%]



Outline

• Machine learning for imaging
• Case study 1: Cardiology  
• Case study 2: Histopathology
• Biases in medical images



Supervised learning – (1)

• Step 1: Collect a dataset or curate a subset of data with labels from an existing dataset
• Step 2: Learn the model using the dataset
• Step 3: Use the output of the model to build software to help clinicians reach better 

decisions, faster.
• Examples: Logistic regression, random forests, XGBoost, Deep neural networks

Patient features

Chest X-ray image

Time to readmission

pneumonia/pneumothorax
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p(y|x)



Dataset (N=3)

Solve this optimization problem to learn
the model. Often formulated as a minimization

of the negative of the log-likelihood function

Score function (high is good, low is bad)

Supervised learning – (2) 

• Given a dataset, the model parameters are learned via maximum 
likelihood estimation

Deep neural networks typically learned
using tools that leverage automatic differentiation
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Computer vision

• Computer vision has had a front row seat to the advances in deep 
learning

Deng, Jia, et al. "Imagenet: A 
large-scale hierarchical image 
database." 2009 IEEE 
conference on computer 
vision and pattern 
recognition. Ieee, 2009.



Error rates on Imagenet over time



Neural networks in a slide

• Simplest neural network is a multi-layer perceptron
• Neural networks are known to be universal function approximators
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Convolutional neural networks
Capture the fact that we may want representations that are spatially invariant



Deep residual neural networks

Deep Residual Learning for Image Recognition, He et. al, 2015

Researchers found that deep networks had a hard time 
learning the identity function.

They added a skip-connections between layers: 
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Imaging in medicine

• History of Medical Imaging, Bradley et. al, 2008
• Nuclear medicine: Using radiation to see inside the human body
• X-ray discovered in 1895 (won the Nobel in 1901)
• CT, PET discovered thereafter

• Magnetic resonance imaging: Mapping resonance in the body to 
images
• Ultrasound imaging: Mapping high-frequency sound waves to images
• Histopathological imaging: Images of stained tissue samples

http://websites.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/2008-09-procAmerPhilSoc_Bradley-MedicalImagingHistory.pdf


Decision making with images

• Ultrasound: 
• Echocardiograms

• Visualize beating of the heart to assess normal function
• Abdominal ultrasounds

• Assess healthy function of abdominal organs

• X-rays:
• Breast cancer screening
• Guiding surgery to remove blood clots, insert catheters
• Friday: Hear from Ruizhi Liao on combining text and chest x-ray data



Technical issues in machine learning for 
medical imaging

• The general setup is almost always as follows: 
• Collect a large set of images [X]
• Use notes/clinical variables/expert annotation to come up with labels [Y]
• Use a deep learning model predict Y from X

• Fairness: 
• Reading Race: AI Recognises Patient's Racial Identity In Medical Images, 

Banerjee et. al, 2021
• Selection bias: 
• Causality matters in medical imaging, Castro et. al, 2019

https://arxiv.org/abs/2107.10356
https://arxiv.org/abs/1912.08142


Case study 1: Deep learning for 
echocardiograms

• Sound waves to image the heart 
• Why:
• Check for problems with your valves or 

chambers
• Check if heart problems are causing shortness 

of breath
• Assess congenital heart defects



A taxonomy of echocardiograms

• Most common: Transthoracic echocardiogram 
• Transesophageal echocardiogram
• Transducer guided down patient’s throat
• Records sound waves bouncing off the heart pumping and interprets them as 

images

• Doppler echocardiogram 
• Used to assess bloodflow

• Stress echocardiogram
• Ultrasound after excercise



Case study 1: Predicting cardiac amyloidosis

• Artificial intelligence-enabled fully automated detection of cardiac 
amyloidosis using electrocardiograms and echocardiograms, Goto et. 
Al, Nature Communications, 2021
• Cardiac amyloidosis
• deposition of protein in the heart muscle, can result in heart failure
• believed to be rare but likely underdiagnosed
• manifests in both ECGs and echo-cardiography but features are not highly 

specific and difficult to spot
• Gold standard: biopsy (costly and risky to patient)

https://www.nature.com/articles/s41467-021-22877-8


Where machine learning can help

• How can we design a method that: 
• Fits into the clinical workflow for cardiac patients
• If used, improve underdiagnosis of disease? 

• Key-idea: Two-stage approach
• Step 1: Build ML models from ECG data (readily available at most care

providers)
• Finding: Models have decent accuracy but not enough for conclusive diagnosis

• Step 2: Build ML models from echocardiogram data
• Finding: Models outperform human experts

• Use step 1 to decide which patients should undergo an echocardiogram and 
apply model from step 2



A multi-center study

Cardiac amyloidosis arises from deposition of misfolded
proteins in the heart muscle, which results in a restrictive-
type cardiomyopathy, and commonly progresses to heart

failure, conduction system disease, and cardiac death. Cardiac
amyloidosis is subclassified based on the specific protein involved,
with the major subtypes being transthyretin amyloidosis (ATTR
cardiac amyloidosis), caused by misfolding of the transthyretin
protein, and light chain amyloidosis (AL cardiac amyloidosis),
caused by accumulation of immunoglobulin light chains1. Cardiac
amyloidosis was previously believed to be rare, but recent reports
have suggested that it is largely underdiagnosed2–6. The impera-
tive of identifying patients has dramatically increased with the
advent of therapies for specific forms of cardiac amyloidosis7–11.

The clinical manifestations of cardiac amyloidosis—including
conduction system disease, vitreous opacity, carpal tunnel syn-
drome, orthostatic hypotension, polyneuropathy, spinal stenosis,
kidney dysfunction, atrial fibrillation, heart failure—are also
commonplace in aging, thus making detection challenging. These
signs and symptoms are distributed across multiple organs and
tissues (and therefore medical disciplines), and the probabilistic
weighting of so many different features is forbidding, even in the
unlikely event that all of the relevant exam findings, medical
history details and diagnostic test results were available to a given
practitioner. Furthermore, definitive diagnostic tests for cardiac
amyloidosis—which include tissue biopsy and some forms of
radionuclide scintigraphy—are costly and have associated risk,
and thus are not plausible as screening approaches12.

Cardiac amyloidosis nonetheless has predictive features captured
by less expensive and more widely available diagnostic modalities
such as electrocardiography13–16 (ECG) and echocardiography17,18,
but the features themselves are not highly specific and thus often
missed. Also, some of the recently highlighted echocardiographic
features require providers to master specialized software packages19,
which are time-consuming to use and therefore tend to be
employed in practice only after the disease is suspected. A truly
generalizable detection strategy should require no specialized
acquisition or processing and should rely on only widely available
input data. However, the low existing prevalence of the disease
places high demands on model performance to reduce the rate of
costly false positives, something that has not been achieved to date.

Here, we show a human-interpretation-free machine learning
pipeline that accurately detects cardiac amyloidosis using a combi-
nation of ECG and echocardiography across multiple institutions.

Results
An ECG model detects cardiac amyloidosis effectively across
multiple institutions. Electrocardiography is the most widely
available cardiac diagnostic test and is frequently performed in

primary care settings at a low cost. Since many of the initial
manifestations of cardiac amyloidosis are likely to result in a
presentation to a primary care physician, we sought first to
develop a model based solely on ECG. We constructed ECG-
derivation, ECG-validation and ECG-test groups from Brigham
and Women’s Hospital (BWH) consisting of 5495, 2247 and 3191
ECG studies respectively (Supplementary Fig. 1, Methods). We
tested the model’s performance using data from a held-out par-
tition of the BWH data, as well as distinct cohorts from Massa-
chusetts General Hospital (MGH) and the University of
California San Francisco (UCSF), which consisted of 842 and
1,103 studies, respectively (Table 1, Table 2). The composition of
AL amyloidosis varied from 34.4% to 58.5% within these groups.
There were no patients diagnosed solely based on transthoracic
echocardiography (Supplementary Table 1). The dataset included
ECGs from various time points before and after a formal diag-
nosis (Supplementary Fig. 2 and Supplementary Table 2).

The ECG model showed good predictive accuracy as measured
by C-statistics of 0.91 (95% CI 0.90–0.93) on the ECG-test set of
BWH and similar performance with C-statistics of 0.85
(0.82–0.87) on Massachusetts General Hospital (MGH) cohort
and 0.86 (0.83–0.88) for the University of California San Francisco
(UCSF) cohort (Fig. 1). The performance was similar when we
considered only a single ECG per patient by taking the earliest
available ECG, with C-statistics of 0.91 (0.87–0.94), 0.83
(0.78–0.88), and 0.83 (0.77–0.88) on BWH, MGH, and UCSF,
respectively (Supplementary Fig. 3). A sensitivity analysis to
amyloidosis subtype demonstrated overall similar performance on
ATTR amyloid with AUC of 0.92 (0.91–0.94), 0.87 (0.84–0.90),
0.97 (0.95–0.98) when compared to AL amyloid which showed
AUC of 0.92 (0.89–0.94), 0.92 (0.89–0.95) and 0.78 (0.75–0.82) for
BWH, MGH and the UCSF cohorts, respectively (Supplementary
Fig. 4). To determine if our model could detect amyloidosis before
a clinical diagnosis was made, we performed a sensitivity analysis
limiting cases to time windows before the diagnosis date (e.g., all
echocardiograms taken 365 or more days before a diagnosis). This
analysis showed that our model was able to detect amyloidosis
with C-statistics of 0.88 (0.85–0.92), 0.88 (0.84–0.92), 0.87
(0.82–0.91), 0.87 (0.82–0.91) and 0.88 (0.83–0.92) at 1, 30, 90,
180 and 365 days before the diagnosis date for BWH and 0.88
(0.85–0.91), 0.87 (0.84–0.90), 0.87 (0.84–0.90), 0.87 (0.83–0.90)
and 0.85 (0.79–0.89) at 1, 30, 90, 180 and 365 days before the
diagnosis date for MGH (Supplementary Fig. 5).

A video-based echocardiography model for cardiac amyloidosis
has very good performance for patients from five AMCs across
two countries. Although the ECG-based models were encoura-
ging, we anticipated they did not have the requisite performance

Table 1 Study-level demographic information (ECG cohort).

BWH MGH UCSF

Case Control Case Control Case Control

Number of studies 2249 8684 405 437 372 731
Age, years ± SD 69.9 ± 10.4 62.3 ± 13.2 72.9 ± 9.0 73.8 ± 8.8 67.7 ± 12.9 67.5 ± 11.7
Age Groups
≤30, n (%) 2 (0.1) 97 (1.1) 1 (0.2) 1 (0.2) 2 (0.5) 0 (0.0)
30–50, n (%) 78 (3.5) 1,370 (15.8) 7 (1.7) 6 (1.4) 36 (9.7) 69 (9,4))
50–70, n (%) 901 (40.1) 4548 (52.4) 143 (35.3) 135 (30.9) 136 (36.6) 278 (38.0)
70–90, n (%) 1242 (55.2) 2606 (30.0) 254 (62.7) 295 (67.5) 198 (53.2) 384 (52.5)
>90, n (%) 26 (1.2) 63 (0.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

HR, bpm ± SD 76.4 ± 16.7 75.9 ± 18.5 78.6 ± 16.6 75.1 ± 19.8 79.6 ± 18.7 72.2 ± 16.3
Sinus rhythm, n (%) 1,736 (77.2) 8,072 (93.0) 283 (69.9) 371 (84.9) 365 (98.1) 729 (99.7)

HR heart rate, BWH Brigham and Women’s Hospital, MGH Massachusetts General Hospital, UCSF University of California San Francisco. N represents the number of studies.
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Step 1: ECG model

• Results Ok but not considered good enough for evaluating 
interventions for a rare diagnosis since it will result in a large number 
of false positives

model output as gold standard, the ECG model detected cardiac
amyloidosis with PPV 3.9% with recall (i.e,. sensitivity) 71.0% in
MGH and PPV 3.4% with recall 52.4% in UCSF at a cutoff of 0.7
(Fig. 5a). Using the ROC curve to estimate a likelihood ratio and
the above estimated prevalence numbers, the echocardiography
model alone detected cardiac amyloidosis with a PPV of 32.7%

with recall 66.9% for MGH and PPV 33.4% with recall 67.0% for
UCSF at a cutoff of 0.8 (Fig. 5b). Assuming an updated prevalence
after pre-screening using the ECG model, the PPV improved to
76.6% for MGH and 73.9% for UCSF with the same cutoff. The
combined ECG-echocardiogram pipeline thus resulted in an
overall recall of 47.5 and 34.8% for MGH and UCSF, respectively,

Fig. 1 Performance of the cardiac amyloidosis ECG model. a ROC plots for detecting cardiac amyloidosis for each institution. The performance on the test
dataset is shown for BWH. b Representative ECG for cases and controls. The score denotes the model output for the ECG. N is the numbers of studies.
Source data are provided as a Source Data file. BWH: Brigham and Women’s Hospital, MGH: Massachusetts General Hospital, UCSF: University of
California San Francisco AUC: area under the curve. ECG: electrocardiogram.
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Step 2: Echocardiogram model

• Performance significantly better when using a richer (but more 
expensive) data modality

at a PPV of nearly 75% (Fig. 5c). In comparison, at a PPV of 75%,
the recall values for the echocardiography model alone would be
12.3% for MGH and 12.3% for UCSF.

Discussion
Cardiac amyloidosis is one member of a group of cardiovascular
diseases, including hypertrophic cardiomyopathy and pulmonary
arterial hypertension, that is potentially treatable but rare and
therefore difficult to detect20. The imperative to recognize
patients with these and other rare diseases largely depends on
availability of specific therapeutic options, but once these appear,
it can be difficult to rapidly adapt prior workflows to ensure that
patients are treated appropriately. Moreover, since patients are
likely to present to non-experts with their initial symptoms, an
operational challenge becomes how best to construct systems that
facilitate detection even in such settings21.

Although the impact of cardiac amyloidosis on ECG and
echocardiography has been known for many decades, the features
themselves in isolation have not been sufficiently specific or
sensitive to be used as heuristics15,16,22,23. For example, in one
study of 400 cardiac amyloidosis patients, the characteristic low-
voltage ECG pattern of cardiac amyloidosis was seen in only 33%
of cardiac amyloidosis patients13. One could in principle combine
these with other non-cardiac features, but this places an
increasing burden on the provider to seek such information,
which often only occurs when a suspicion of the disease exists in
the first place.

In contrast, the approach we have developed here has delib-
erately limited the need for any recognition by the provider

and use inputs that can be potentially acquired in primary care
settings—whether by ECG or handheld echocardiography. To
further enable effective deployment in such settings, these
detection approaches should ideally be coupled with further
facilitation of confirmatory diagnostic processes. In fact, our
approach benefits from the fact that there is a second gate of
confirmatory diagnostic testing: namely measurement of free light
chains, scintigraphy scanning, and possibly tissue biopsy24. The
ECG and echocardiography models thus represent a tunable
detection tool, with cutpoints that can be selected based on
population prevalence and costs and benefits (diagnostic, ther-
apeutic, financial and otherwise) of downstream true and false
positives (and negatives). The data collected through deployment
can itself enable refinement of cutpoints, and potentially spur
retraining of models to better match local conditions. Critically,
in such a system involving a confirmatory step downstream of the
AI detection output, model explainability is less of an issue, and
one can focus on maximizing model performance.

There are several limitations to this study. First, since cardiac
amyloidosis is an underdiagnosed disease, there may have been
undiagnosed cases in the control group. This would produce false
labels and may have affected the model performance, as well as
the ability to estimate it accurately. For example, false labels in the
test sets would worsen the apparent specificity. Second, although
our echocardiography model outperformed experts, the expert
had access to only the echocardiography videos and no other
clinical information. Thus, this analysis compared the ability to
detect amyloidosis using only echocardiogram videos but not to a
total judgement based on multiple information sources, which are
sometimes available in clinical settings.

Fig. 2 Performance of the cardiac amyloidosis echocardiography model. a ROC plots for detecting cardiac amyloidosis for each institution. The
performance on the test dataset is shown for BWH. b representative echocardiography images for cases and controls. The score denotes the model output
for the video. N is the numbers of studies. Source data are provided as a Source Data file. BWH: Brigham and Women’s Hospital, MGH: Massachusetts
General Hospital, UCSF: University of California San Francisco, NW: Northwestern University, Keio: Keio University. AUC: area under the curve.
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Recall: Metrics

• Positive Predictive Value (PPV): TP/(TP+FP)
• A high PPV will indicate that a positive result is likely correct

• Sensitivity: TP/(TP+FN) 
• A highly sensitive test will have few-false negatives



Analyzing the combined approach 

• ECG model: 
• MGH: PPV 3.9% with Sensitivity 71%
• BWH: PPV 3.4% with Sensitivity 52.4%

• Echo model: 
• MGH: PPV 32.7% with Sensitivity 66.9%
• BWH: PPV: 33.4% with Sensitivity 67%

• Combined: 
• MGH: PPV: 76.6% with Sensitivity 47.5%
• BWH: PPV: 73.9% with Sensitivity 34.8%



Case study 2: Deep learning for 
histopathological image data

• Research by Richard J. Chen
• 3rd year Ph.D. Candidate, Harvard University / 

BWH, Broad Institute
• Work in submission



Histopathological images in the clinical 
workflow

• Histopathology: Microscopic examination of tissue to study diseases 
and their different presentations, 
• Pipeline: 
• Surgery, biopsy or autopsy for excision of tissue
• Placed in a fixative to stabilize tissue
• Investigated under a microscope

• Histopathological images are routinely used for clinical diagnoses of 
cancer
• Key question: How can we use machine learning to build representations of 

histopathological image data? 



Slide-Level Supervised Learning (Weak Supervision)

Lipkova et al. 2021, In Review



• Attention weights saliently 
localize tumor regions in 
binary classification tasks  
of benign / metastasis

Weakly-Supervised Learning: Finding Needles in Haystacks via Attention

Lu et al. 2021, Nature BME



Current Paradigm is limited by: Clinical Domain Knowledge

• Requires clinical domain knowledge to:
1. label image regions in WSIs with 

known morphological phenotypes 
(patch-level tasks)

2. Make prognostic decisions from 
subjective interpretation of the 
entire WSI (slide-level tasks)

• How can we identify new phenotypic 
biomarkers? 

• What are we missing in current decision-
making that can guide prognosis?



Current Paradigm is limited by: Clinical Domain Knowledge

Current pipelines for creating representations of whole slide images make use of ResNet50 architectures 
pretrained on imagenet.



Self-Supervised Learning: Pixel-Level Annotations are Not Needed!

Lipkova et al. 2021, In Review, Ciga et. al

We build upon recent work [Resource and data efficient self supervised learning, Ciga et. al, 2021] who 
show that self-supervision yields general purpose 

representations of histopathological images 


