

Topics in Machine Learning Machine Learning for Healthcare

Rahul G. Krishnan

Assistant Professor

Computer science & Laboratory Medicine and Pathobiology

Announcements

- Friday project proposals are due; you should all have teams and have begun making your reports; book TA office hours for help/feedback
- Friday: 2 presentations
 - Class participation grade depends on your attending and asking questions
- Poll:
 - Would you be more comfortable in a bigger classroom?

Outline

- Unsupervised disease progression modeling
 - Learning nonlinear state space models
 - Discussion of PPMI model presented by Kristen Severson (Microsoft)
- Alternative strategies for disease progression modeling:
 - Supervised learning
 - Learning from cross-sectional data

Patient data is often sequential

Disease registries track patient data over time

Smartwatch and app sensors collect daily activity data

Disease progression -(1)

Predicted risk of developing disease or predicting outcome

Example: Multiple myeloma

- Rare blood cancer
- MMRF CoMMpass Study has ~1000 patients

Disease Progression -(2)

Why do we need good unsupervised models of sequential data?

Dynamic Risk Prediction/Forecasting: Learn a representation of patient that is predictive of clinical outcomes in the future

Patient subtyping: Clustering patient trajectories to uncover subtypes corresponding to disease behaviors

Case study 1: Personalized I-O HMMs for disease progression modeling, Severson et al, MLHC 2020

Inferred latent states across data dimensions

Unsupervised disease progression in a nutshell

- Gather and collect all the time-varying data about patients
- Train a model to do unsupervised learning
- Using the model:
 - Introspect and attempt to interpret the model parameters
 - Use the model to forecast data into the future

Deep Markov Models

Structured Inference Networks for Nonlinear State Space Models, RGK, US, DS, AAAI 2017

Unsupervised learning of nonlinear state space models

• Previous work:

- Dual Extended Kalman Filters (Wan et a., 1996),
- Particle filters (Schon et al., 2011),
- Expectation Maximization (Briegel et al, 1999, Ghahramani et al, 1999),
- Nonlinear dynamic factor analysis (Valpola, 2002)

• Goals:

- Difficult to scale to high dimensional data, did not leverage modern hardware
- Expensive test time inference

Technical challenge: Variational learning via maximum likelihood

Loss function

$$\log p(\vec{x}; \theta) = \log \int_{z} p(\vec{x}, \vec{z}; \theta) \ge \underbrace{\int_{z} q(\vec{z} | \vec{x}; \phi) \log \frac{p(\vec{x}, \vec{z}; \theta)}{q(\vec{z} | \vec{x}; \phi)}}_{\text{ELBO: } \mathcal{L}(\vec{x}; \phi, \theta)}$$

The variational distribution is over multiple different variables.

How should we design an inference network over multiple latent variables?

Key Idea Mimic the factorization of the true posterior

$$z_2 \perp x_1 | z_1$$
$$p(z_2 | z_1, x_{1:3}) = p(z_2 | z_1, x_{2:3})$$

$$\begin{cases} z_3 \perp x_1, x_2, z_1 | z_2 \\ p(z_3 | z_1, z_2, x_{1:3}) = p(z_3 | z_2, x_3) \end{cases}$$

Factorization of the true posterior

$$p(\vec{z}|\vec{x}) = p(z_1, z_2, z_3|x_1, x_2, x_3) = p(z_1|x_{1:3})p(z_2|z_1, x_{1:3})p(z_3|z_1, z_2, x_{1:3})$$
$$p(\vec{z}|\vec{x}) = p(z_1|x_{1:3})p(z_2|z_1, x_{2:3})p(z_3|z_2, x_3)$$

Factorization of the variational distribution: $q(\vec{z}|\vec{x}) = q(z_1|x_{1:3})q(z_2|z_1,x_{2:3})q(z_3|z_2,x_3)$

According to the formula, at each time step we need:

a) previous latent state

b) all future observations

To build a representation of all future observations, we'll borrow a tool from Deep Learning
Recurrent Neural Networks

Recurrent Neural Networks

- Auto-regressive sequential models of data
- A forward-RNN models $p(x_1,x_2,x_3) = p(x_1|h_1)\hat{p}(h_2|h_1)p(x_2|h_2)\hat{p}(h_3|h_2)p(x_3|h_3)$
 - Each hidden state summarizes the variables in the past

Key Idea: By running an RNN backward, we can use it to summarize the variables in the future

Structured Inference Network

$$q(\vec{z}|\vec{x}) = q(z_1|x_1, x_2, x_3)q(z_2|z_1, x_2, x_3)q(z_3|z_2, x_3)$$

Structured Inference Network

$$q(\vec{z}|\vec{x}) = q(z_1|x_1, x_2, x_3)q(z_2|z_1, x_2, x_3)q(z_3|z_2, x_3)$$

Structured Inference Network

$$q(\vec{z}|\vec{x}) = q(z_1|x_1, x_2, x_3)q(z_2|z_1, x_2, x_3)q(z_3|z_2, x_3)$$

Mini-Recap of Structured Inference Networks

Question: How to select among a large set of factorizations for the variational distribution

Idea 1: Use the factorization of the true posterior

Idea 2: Use conditional independence statements in the model to simplify the factorization

Idea 3: Give a practical model by combining insights with advances in deep learning

Evaluation of unsupervised time-series models

• Metrics:

• (Upper bounds on) negative held-out log likelihood

Polyphonic Music Dataset (Boulanger-Lewandowski et al., 2012)

Use the model the generate music!

Captures some short- and long-term patterns.

Model the progression of disease

Forecast patient biomarkers

What can we do with Deep Markov Models?

Sequential treatment effects

Generate new examples of complex data

Case Study 1: Disease progression of diabetic patients

Dataset: Clinical data from a major insurance claims provider

Dataset size: 5000 diabetic patients. Each patient's data (over 4 years) is grouped into three month intervals, yielding a sequence of length 18.

Experiment: Vary the complexity of the transition and emission function in the Deep Markov Model

Observations

- 48 binary observations at each time step
- A1c level (a protein for which a high level indicates that the patient is diabetic)
- Glucose (blood sugar)
- Demographics: Age, Gender
- ICD-9 diagnosis codes for co-morbidities

Modeling diabetic patients

Metrics:

(Upper bounds on)
negative
held-out log likelihood

Linear State Space Mode

There is benefit here, to using a nonlinear functions, i.e. Deep Markov Model, to model the sequence of clinical observations

Deep Markov Model

Case Study 2: Treatment effect

Proof of concept Sequential treatment effect

Deep Markov Models
can be a powerful tool in
estimators of
sequential treatment
effects

Figure: Comparing glucose levels from simulating with the model under the factual and the counterfactual

Case Study 3: Inductive Biases for Treatment effect

Source: https://blog.knoldus.com/machinex-starts-with-why-ft-convolutional-neural-network/amp/

Inductive biases for treatment effect

 $p(z_{t}|z_{t-1},u_{t-1};\theta)$ (u₁) (u₂) (u₃)

Developed new neural network architectures inspired by the pharmacokinetic and pharmacodynamic modeling literature

Inductive Biases for the Transition Function

$$p(z_t|z_{t-1},u_{t-1};\theta)$$

Cancer log-kill revisited, Norton, 2014

A Bayesian nonparametric approach for estimating individualized treatmentresponse curves, Xu et. al 2016

Time		
Treatments Line 3+ Line 2 Line 1 Lenalidomide Bortezomib		
Lab results Serum IgG		

Forecasting

PK/PD DMM better at forecasting patient biomarkers

Supervised learning for disease progression

- Did not cover (but useful for further reading):
 - Supervised techniques for modeling the progression of diseases
 - Modeling Disease Progression via Fused Sparse Group Lasso, Zhou et. Al, KDD 2012

Key idea:

- Predict disease status in 6, 12, 24, 36 months with a single model (multi-task learning)
- Have different weights for different time-horizons
- The tasks are related so tie the weights together via a group-lasso penalty
- Look at weights to assess the features most predictive of disease state

Cross-sectional data

- Thus far we've discussed models built on disease cohorts (many patients, many time-points)
- Only 1 time-point per patient (but potentially many patients)
- Goal is to construct a time-line that is shared by all or groups of patients

Slide credits: David Sontag

Insights to identify structure

Goals with cross-sectional data

Creating trees in time

Reduce dimensionality of features via PCA/ICA

Build minimum spanning tree while treating lower dimensional representations as nodes

Use topological sort to identify time-axis

MST-based approach (Monocle)

[Trapnell et al., Nature Biotechnology, 2014]

Subtype and Stage Inference (SuStain)

- Generative model for a data point:
 - Sample subtype $c \sim \text{Categorical}(f_1, ..., f_c)$
 - Sample stage t ~ Categorical(uniform)
 - For each biomarker *i*, sample $x_i \sim \mathcal{N}(g_{c,i}(t), \sigma_i)$
- Means are enforced to be monotonically increasing and piece-wise linear:

Explicitly incorporate variation due to sub-type and stage into a probabilistic model

$$g(t) = \begin{cases} \frac{1}{t_{E_{z_1}}}t, 0 < t \leq t_{E_{z_1}} \\ z_1 + \frac{z_2 - z_1}{t_{E_{z_2}} - t_{E_{z_1}}} \left(t - t_{E_{z_1}}\right), t_{E_{z_1}} < t \leq t_{E_{z_2}} \\ \vdots \\ z_{R-1} + \frac{z_R - z_{R-1}}{t_{E_{z_R}} - t_{E_{z_{R-1}}}} \left(t - t_{E_{z_{R-1}}}\right), t_{E_{z_{R-1}}} < t \leq t_{E_{z_R}} \end{cases}$$
 Shown here for one choice of *c,i* — no parameter sharing across biomarkers or subtypes
$$z_R + \frac{z_{max} - z_R}{1 - t_{E_{z_R}}} \left(t - t_{E_{z_R}}\right), t_{E_{z_R}} < t \leq 1$$

[Young et al., Brain 2014; Young et al., Nature Communications 2018]

Questions?