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Announcements

* Friday — project proposals are due; you should all have teams and

have begun making your reports; book TA office hours for
help/feedback

* Friday: 2 presentations
 Class participation grade depends on your attending and asking questions

* Poll:
* Would you be more comfortable in a bigger classroom?



Outline

* Unsupervised disease progression modeling
* Learning nonlinear state space models
 Discussion of PPMI model presented by Kristen Severson (Microsoft)

» Alternative strategies for disease progression modeling:
e Supervised learning
* Learning from cross-sectional data



Patient data is often sequential
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Disease registries track patient data over time
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Smartwatch and app sensors collect daily activity
data




Disease progression — (1)
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Disease burden

Time

Predicted risk of developing disease or predicting outcome

Standard practice

Undiagnosed patient Predicted condition

Example: Multiple myeloma

» Rare blood cancer

» MMRF CoMMpass Study has
~1000 patients
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Disease Progression — (2)

Disease burden

Subtype A: Short-term responder
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Why do we need good unsupervised models
of sequential data®?

Dynamic Risk Prediction/Forecasting : Learn a representation of patient that is predictive of clinical
outcomes in the future

Patient subtyping: Clustering patient trajectories to uncover subtypes corresponding to disease behaviors




Case study 1: Personalized I-O HMMs for disease
progression modeling, Severson et al, MLHC 2020
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Unsupervised disease progression in a
nutshell

e Gather and collect all the time-varying data about patients
* Train @ model to do unsupervised learning

* Using the model:
* Introspect and attempt to interpret the model parameters
* Use the model to forecast data into the future



State Space Models

Treatments

Clinical
Observations

& Y

Poor knowledge of data generating
process for many kinds of clinical
data:
Use neural networks as a proxy for
processes we do not know /

A




Deep Markov Models

Transition
function

<1

p(x‘z7 9) Emission

function

Structured Inference Networks for Nonlinear State Space Models, RGK, US, DS, AAAI 2017



Unsupervised learning of nonlinear
state space models

* Previous work:
* Dual Extended Kalman Filters (Wan et a., 1996),
 Particle filters (Schon et al., 2011),
* Expectation Maximization (Briegel et al, 1999, Ghahramani et al, 1999),
* Nonlinear dynamic factor analysis (Valpola, 2002)

* Goals:
* Difficult to scale to high dimensional data, did not leverage modern hardware
e Expensive test time inference



Technical challenge:
Variational learning via maximum likelihood

e

q(z|z; &
000

Loss function

logp(£;6) = log / p(Z, 7;0) > / q(Z|Z; ¢) log

p(Z, Z;6)

q(Z|7;

?)

ELBO: L(Z;¢,0)

[ The variational distribution is over multiple different variables.

—

How should we design an inference network over multiple latent

variables?

Datapoint 1

i

q(z|z; ¢)

®
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Datapoint 2

q(z|z; 9)

LX)

Time

Datapoint 3




Key |dea
Mimic the factorization of the true posterior

p(g\f) — p(zh 22 Z3|CE1> X2, 333) — p(2’1 \213‘1:3)@(22|21, fElzs)IP(Z:slea 225 £E1:3)}

21 B Z9 B

2o L x1|2 z3 L x1, 29, 21|22
p(22|21,71.3) = p(22|21, x2:3) || p(23]21, 22, 71.3) = p(23|22, 23




Factorization of the true posterior

p(i’];f;’) — P(Zh 22 Z3|$17 Zo, 153) — p(zl !$1:3)p(22|2’1, 5131:3)19(23!21, 22, 5131:3)

p(5|f) — p(21!$1:3)p(22\21, x2:3)p(z3]z2, $3)

e N
Factorization of the variational distribution: ~ q(2]Z) = q(21|71.3)q(22|21, T2.3)q(23|22, x3)
N\ Y,
C I
According to the formula, at each time step we need:
a) previous latent state b) all future observations
o J
4 I

To build a representation of all future observations, we’ll borrow a tool from Deep Learning
Recurrent Neural Networks




Recurrent Neural Networks

* Auto-regressive sequential models of data

e A forward-RNN models P(Z1, %2, 23) = p(@1]h1)p(he|h1)p(z2|h2)p(hs|ha)p(xs|hs)
* Each hidden state summarizes the variables in the past

[ Key Idea: By running an RNN backward, we can use it to summarize the variables in the future J

a N N
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Structured Inference Network

(1(5153') = 61(21|331,332, $3)Q(Zz|21,$2,333)(1(Z3|22,333)




Structured Inference Network

4(5153') = (I(21|331,$2,CUS)Q(Z2|Z1,$2, 333)Q(23|22,333)




Structured Inference Network

Q(Z‘Ij’) — q(zl |$17 X2, $3)Q(Z2lzl, X2, IB3)Q(23|22, $3)

M1, 21 M2, 2 I3, E3 ST‘R




Mini-Recap of Structured Inference Networks

4 N

Question: How to
select among a large
set of factorizations for
the variational
distribution

\_ /

4 A

Idea 1: Use the
factorization of
the true posterior

-

Idea 2: Use conditional

~

independence statements
in the model to simplify the

\ /

\_

factorization

/

-

Idea 3: Give a

~

practical model by
combining insights
with advances in

\_

deep learning

/




Evaluation of unsupervised time-series
models

* Metrics:
e (Upper bounds on ) negative held-out log likelihood



Polyphonic Music Dataset (Boulanger-
Lewandowski et al., 2012)
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Use the model the generate music!

<

[ Captures some short- and long-term patterns. 1




Model the progression of
disease

Forecast patient
biomarkers

What can we do with
Deep Markov Models?

Sequential treatment
effects

Generate new examples
of complex data




Case Study 1: Disease progression of diabetic
patients

4 Y e N

Dataset: Clinical data from a major insurance
claims provider Observations

* 48 binary observations at each time step
Dataset size: 5000 diabetic patients. Each patient’s * Alc level (a protein for which a high level
data (over 4 years) is grouped into three month indicates that the patient is diabetic)
intervals, yielding a sequence of length 18. * Glucose (blood sugar)

* Demographics: Age, Gender
Experiment: Vary the complexity of the transition * |CD-9 diagnosis codes for co-morbidities
and emission function in the Deep Markov Model

L AN /




Modeling
diabetic patients

Metrics:

(Upper bounds on)
negative
held-out log likelihood

-

\_

There is benefit here, to

Markov Model, to model
the sequence of clinical

~

using a nonlinear
functions, i.e. Deep

observations

/

Linear State
Space Mode

Deep Markov
Model

Validate Upper Bound
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Case Study 2: Treatment effect




Sequential Treatment
Effect
(A case study)




Proof of concept
Sequential treatment effect

B v/ medication B w/out medication

_ High A1C 10 High Glucose

1.0
209 0.9/ | 4 )
= Deep Markov Models
S: 08 0.8 can be a powerful tool in
S estimators of
é 0.7 0.7 sequential treatment
= effects
0.6 0.6 \_ J
a®
0'50 2 4 6 8 10 O'50 2 4 6 8 10

Time Time

Figure: Comparing glucose levels from simulating with the model
under the factual and the counterfactual



Case Study 3: Inductive Biases for Treatment
effect

Where can we draw
inspiration from when
building Deep Markov
Models?

=y
o — (=) — I
® AN

V1 Receptive Fields Optical Input

Source: https://blog.knoldus.com/machinex-starts-with-why-ft-convolutional-neural-network/amp/



https://blog.knoldus.com/machinex-starts-with-why-ft-convolutional-neural-network/amp/

Inductive biases for treatment effect

p(2¢|2¢—1,us—1;0)

4 N

Developed new
neural network
architectures inspired
by the pharmacokinetic
and pharmacodynamic
modeling literature

< )




Inductive Biases for the Transition Function

p(2t|2t—1,ut—1;0)

Linear

Log cell kill model

Treatment exponential

Cancer log-kill revisited, Norton, 2014 A Bayesian nonparametric approach for estimating individualized treatment-
response curves, Xu et. al 2016
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Forecasting
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PK/PD DMM better at forecasting patient biomarkers




Supervised learning for disease progression

* Did not cover (but useful for further reading):
» Supervised techniques for modeling the progression of diseases

 Modeling Disease Progression via Fused Sparse Group Lasso, Zhou et. Al,
KDD 2012

* Key idea:

* Predict disease status in 6, 12, 24, 36 months with a single model (multi-task
learning)

* Have different weights for different time-horizons
* The tasks are related so tie the weights together via a group-lasso penalty
* Look at weights to assess the features most predictive of disease state



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191837/

Cross-sectional data

e Thus far we’ve discussed models built on disease cohorts (many
patients, many time-points)

* Only 1 time-point per patient (but potentially many patients)

e Goal is to construct a time-line that is shared by all or groups of
patients

HJOhn” HMaryH
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Early disease Biomarker A Late disease

Slide credits: David Sontag



Biomarker B

Insights to identify structure

Insight #1: with
.'.‘ enough data, may
(] be possible to

... recognize structure

v

Biomarker A

[Bendall et al., Cell 2014 (human B cell development)]

Biomarker B

Insight #2: sequential

G observations from

0@ same patient can
also help

e e e Each color is

a different

° patient
o

>
>

Biomarker A



Goals with cross-sectional data

A Early disease A (\

Subtype 1
Subtype 2

Biomarker B Biomarker B

Late disease

~
7

v

Biomarker A Biomarker A



Creating trees in time

MST-based approach (Monocle)

Reduce dimensionality of features via

Proliferating Differentiating Imm;’::gﬁl mal
PCA/|CA cell myoblast cell y
Beginning of
/ pseudotime
Build minimum spanning tree while ¢
treating lower dimensional representations 01
— &
as nodes =
2
8
§ _11
(@]
Use topological sort to identify time-axis Py End of
(@)~ pseudotime
-3 -2

Component 2

[Trapnell et al., Nature Biotechnology, 2014]



Subtype and Stage Inference (SuStaln)

* Generative model for a data point:
— Sample subtype ¢ ~ Categorical(f,, ..., f¢)
— Sample stage t ~ Categorical(uniform)
— For each biomarkeri, sample z; ~ N (g..i(t), 0;)

* Means are enforced to be monotonically increasing
and piece-wise linear:

tEZ—lt, o<t < t,,
’ Shown here for one
choice of ¢,i— no

" parameter sharing across
Zpoy S (t=ts, )it <t<t:  biomarkers or subtypes

R—-1

Z2,—Z
Zl +t Zitl
Ezy E;

(t - thl ) 9 thl <t S tEZZ

1

Explicitly incorporate = 9
variation due to sub-type

and stage into a
T Zax —%
probabilistic model zZp + l—szRR (t - thR>’ tp <t <1

\

[Young et al., Brain 2014; Young et al., Nature Communications 2018]



Questions?



