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Outline

* Announcements

* Time series modeling in healthcare
e Time-series data in the ICU
* Time-series data in for chronic disease care and management
* What can machine learning do?

e Statistical models for time-series data
* Univariate models for capturing patterns
* Multi-variate models for high-dimensional data
* Latent variable models for time-series data
* Clustering, forecasting and tackling clinical tasks



Announcements

* In two weeks, project proposals [10% of grade] are due:
 Start forming teams and brainstorming project ideas
* Create an outline for your project proposal
* Link: csc2541hf-2021.github.io/assignments/projectproposal

* Sign up for student presentations [15% of grade]
* Present in pairs, first to TAs, then to the class
* First come first serve for papers
* csc2541hf-2021.github.io/assignments/paperpresentation
» See quercus announcement by Farnam

 Sign up for project presentation slots



Time-series datasets

PhysioNet/MIMIC

Intensive care data

Similarities

Multi-modality
Missingness
Sampling biases

Multiple Myeloma
Research Foundation

Chronic disease registries

Parkinson’s Disease
(PPMI)

e

Differences

Multi-modality
Missingness
Sampling biases




Tasks for machine learning

* Risk stratification with time-series data
* All the same techniques we saw previously except our conditioning set x now
comprises a time-series
* Pattern discovery in time-series data
* K-means is easy to apply on static data
* What about noisy, missing, time-varying data?

* Forecasting
e Can we use statistical models to predict how a patient might evolve over time

* Counterfactual reasoning is an important topic
* Condition on aspects of the data that can change how observations behave over time



Challenges for machine learning

* Clinical decision making is multi-modal

* Frequency of observations and interventions can vary dramatically:
* Intensive care unit: Observations and interventions happening in real-time
* High-frequency data
* Chronic disease management: Observations and interventions happen over
the span of months or years
* Low-frequency data

* Missingness is rampant

* |CU: sensor noise

* Chronic disease management: administrative errors, access to health
insurance



Preprocessing for time-series data

e For static data:
» Z-scoring
* Min-max normalization

* For temporal data:
* Normalization by standard reference measures (healthy values)
Log-transformation
* Removing the mean of a time-series
Normalization to [-1, 1]

Outlier removal
* Not a good idea to remove if signal is in tails of the distribution

e Imputation for missing data:
* Feed-forward imputation
* Linear interpolation
* Polynomial interpolation
* We'll see more advanced imputation strategies later in the class



Learning problems with time-series data

* One of the best ways to learn about statistical models for time-series
data is to know what you can do with them,

* Unsupervised learning
* Forecasting — predict time-series into the future
* Identify and detect patterns and clusters in time-series

e Supervised learning:
* Make predictions from time-series

e Lets turn our attention to focus on forecasting
* To do forecasting, we often need a model of the time-series
» We’ll start with the task of modeling a single biomarker



Univariate models of time series data



Time-series regression with time-series
features

Yy =c+ 0z 1+ 0o+ ...+ 03244

* Treat time-series modeling as a linear regression problem
 x: features (potentially time-varying)
 y: outcome of interest

 But what if we had no other features?



ARIMA [AutoREgressive Integrated Moving
Average]

* ARIMA(p,d,q) model

* p: order of autoregressive
part

! / /
Yy = C T gblyt—l T+ ...+ gbpyt—p * d: degree of differencing

* g: order of moving average
+ 01601+ ...+ 046 + € q 6 averag

Con: linear additive model

. Pro: Very flexible model of time-series data!
Discuss on board

Reference: Forecasting: Principles and Practice, Rob J Hyndman and George Athanasopoulos



https://otexts.com/fpp2/

Nonlinear models of univariate time-series
data

Yt = f(xt—la R 7xt—k;9)

* Very general formulation for a broad class of time series problems
with nonlinear models

* Theta represent the parameters of this model

* Next, we’ll study a single case study of the use of a such a non-linear
model to make predictions from electrocardiogram data



General rule: Decompose time-series
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When you think about modeling
time-series data, think about

trends and patterns that exist

and how to design models to
capture different variation.




Multivariate models of time series data



What happens if we have more than one
time-series to model?

e Simple option: Use D-different univariate time-series models to
model the data
* Discussion —is this a good idea? What are alternatives?



Combining Possibly Related Estimation Problems

By B. EFRON and C. MORRIS
Stanford University The RAND Corporation

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION,
on Wednesday, May 9th, 1973, Professor J. DURBIN in the Chair]

SUMMARY
We have two sets of parameters we wish to estimate, and wonder whether
the James-Stein estimator should be applied separately to the two sets or
once to the combined problem. We show that there is a class of compromise
estimators, Bayesian in nature, which will usually be preferred to either
alternative.

“The difficulty here is to know what problems are to be combined together—
why should not all our estimation problems be lumped together into one grand
melée?”’

GEORGE BARNARD commenting on the
James-Stein estimator, 1962.

Keywords: EMPIRICAL BAYES; JAMES—STEIN; SIMULTANEOUS ESTIMATION; COMBINING
ESTIMATES ; PARTIAL EXCHANGEABILITY

1. INTRODUCTION

SupPosE that the statistician wishes to estimate parameters 0,,0,,. ., 0, where each
0; is the mean of an independent normal variate x;,

x;| 0~ A(8;, D). (1.1)
James and Stein (1961) have shown that for k>3 the estimator
k—2)D
3i=[1_~——( S) ]xi, 1.2

S=3Fk ,x2, is uniformly better than the maximum likelihood estimator 82 = x;
when the loss function is the sum of squared errors.

The James—Stein estimator seems to do the impossible. The estimate of each 6,
is made to depend not only on x; but on the other x;, whose distributions seemingly
are unrelated to 0;, and the result is an improvement over the maximum likelihood
estimator no matter what the values of 0,, 0,, ..., 8. The reaction of the statistical
community to this four de force has been generally hostile, the usual suggestion being
that this is some sort of mathematical trick devoid of genuine statistical merit. Thus
we have the “speed of light” rhetorical question, “Do you mean that if I want to
estimate tea consumption in Taiwan I will do better to estimate simultaneously the
speed of light and the weight of hogs in Montana?” (For a recent example see
Kempthorne’s discussion following Lindley and Smith, 1972.)



First-order Markov models

p(w1, 72, 73) = p(w1)p(T2|T1)p(T3|72)




K-gram models
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p(l‘h L2, ... 7504) — p(il?l)l?(ili‘z\1‘1)]9(1’3\561...2)p($4|$1...,3)




Recurrent Neural Networks

* Auto-regressive sequential models of data

e Forward recurrent neural network model
* Each hidden state summarizes all the variables in the past

p(x1, 2, x3) = p(x1|h1)p(ha|hi)p(x2|h)p(hs|he)p(xs|hs)

. IR
hy ho h3




Recurrent neural networks in action

* Widely used for time-series
modeling

* The parameterization of the
functions that control how h
behaves dictate the type of
recurrent neural networks:

* Long short-term memory
(LSTM)

* Gated recurrent units (GRU)



LSTM with a forget gate |edit]

The compact forms of the equations for the forward pass of an LSTM unit with a forget gate are:['1(®]
i = oo (Wyas + Uphe-y + by)
it = ag(Mmt + Uiht_l + bz)
or = 0g(Woay + Ushy—1 + by)
& = oo(Wezs + Ughe_y + by)
¢t = ftoci1 +14 08
hy = o o ap(ct)

where the initial values are ¢y = 0 and hg = 0 and the operator o denotes the Hadamard product (element-wise product). The subscript ¢ indexes the time step.

Variables [ edit]
e 2, € R%: input vector to the LSTM unit
« f; € (0,1)": forget gate's activation vector
0ol € (0, l)hz input/update gate's activation vector
« 0, € (0,1)": output gate's activation vector
o h: € (-1, l)hz hidden state vector also known as output vector of the LSTM unit
o & € (-1, 1)h: cell input activation vector
o ¢, € R": cell state vector

W e R U e R and b € R": weight matrices and bias vector parameters which need to be learned during training

where the superscripts d and h refer to the number of input features and number of hidden units, respectively.

Source: https://en.wikipedia.org/wiki/Long_short-term_memory



LSTM equationh§

—>Ct

Layer ComponentwiseCopy Concatenate

— ENRS

Source: https://en.wikipedia.org/wiki/Long_short-term_memory

Legend:



Latent factor models

» Unsupervised models of (often high-
dimensional data)

e Z: unobserved latent variation (often lower
dimensional) than X (observed data)

* You may have encountered many variations
of latent factor models:
* Linear models:
* Probabilistic PCA
* Factor analysis

* Non-linear models
e Variational autoencoders



State space models

22 There are many different varieties
of state space models.

Each one makes different
assumptions on how the
probabilities behave and are
transformed.




Hidden Markov Model

Z are discrete random
variables (often
categorical)

Edges denote
transition matrices




Linear Gaussian State Space Model

Z are continuous valued

random variables
(Gaussian)

2zt = N (e, 0)
pr = Wzi1+0
o=

<1




Deep Markov Models

Transition
function

<1

p(x‘z7 9) Emission

function

Structured Inference Networks for Nonlinear State Space Models, RGK, US, DS, AAAI 2017



Learning time-series models

Univariate time-series Multivariate time series

. K-order Markov
Regression
models
Recurrent neural
ARIMA
networks
Nonlinear regression via conv. nets State space models




Learning via maximum likelihood estimation
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Recipes for learning via maximum likelihood
estimation

e Usually:
* Write down the log likelihood as a function of the model parameters

* Use stochastic gradient ascent to maximize log likelihood of observed data to
learn parameters

e For latent variable models:

* |f the posterior distribution is tractable, often can write the log-likelihood in
closed form or obtain an unbiased estimate via Monte-Carlo sampling
* Else: approximate inference
 Variational inference
* Markov Chain Monte Carlo



Evaluation of time-series models

* Mean-squared error
* Forecasting on training data
* Forecasting on held-out data

* Held-out log likelihood
* Introspection of model parameters



Supervision with time-series models

* If we care about doing classification with time-series we can adapt
approaches we have seen to modify them for time-series data

* Case study:

y= f(x1,...,27;0)



Supervised learning case study: Classification
of time-series

e i vy

AliveCore ECG
L' device

ECG = electrocardiogram



Classification of heart rhythm

Normalrhythm

Amplitude (mV)
=
E

AF rhythm
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[Clifford, Liu, Moody, Mark. PhysioNet Computing in Cardiology Challenge 2017]

Why should we care about this
problem?
Atrial fibrillation (A-fib) is an

irregular and often very rapid
heart rhythm (arrhythmia) that
can lead to blood clots in the hea




Traditional approaches to this problem

Feature Signal

x T

Time Points Where a Peak Is Detected

3. Peak detector proposed in [41].

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE
Engineeringin Medicine & Biology, 2002]



Proceedings Computersin Cardiology (1991)

Detection of Atrial Fibrillation Using Artificial Neural Networks

SG Artis, RG Mark, GB Moody

Harvard-MIT
Division of Health Sciences and Technology, Cambridge, MA

Abstract

Artificial neural networks (ANNs) were used as pat-
tern detectors to detect atrial fibrillation (AF) in the
MIT-BIH Arrhythmia Database. ECG data was repre-
sented using generalized interval transition matrices, as
in Markov model AF detectors(1]. A training file was
developed, using these transition matrices, for a back-
propagation ANN. This file consisted of approzimately
15 minutes each of AF and non-AF data. The ANN
was succesfully trained using this data. Three standard
databases were used to test network performance. Post-
processing of the ANN output yielded an AF sensitivily
of 92.86% and an AF positive predictive accuracy of
92.34%.

1 Introduction

on R-R interval sequences using a variety of statistical
methods [1] but there is room for improvement in these
techniques.

Pattern classifiers exist in many forms, and artificial
neural networks (ANNs) represent an important sub-
set of these classifiers. ANNs are attractive for solving
pattern recognition problems because few assumptions
about the underlying data need to be made. The task
of the operator of an ANN is to separate the data into
subsets. The network will be able classify these sub-
sets according to type as long as they are distinct. Neu-
ral network training requires appropriate training data,
pre-processing and post-processing algorithms, an ap-
propriate network topology, and a training algorithm,
as well as evaluation databases. This document will
present the design and evaluation of a technique which
detects AF in the presence of other cardiac arrhythmias
using a backpropagation artificial neural network.



Physionet 2017 challenge [~¥8K ECGSs]

Rhythm level
Interpretation

Conduction level
Interpretation

Initial evidence

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]

Best approach uses a combination of expert-derived and ML features




Diagnhosing arrhythmia

Stanford ML Group

Cardiologist-Level Arrhythmia Detection
With Convolutional Neural Networks Use a Zio sensor to extract single-

Pranav Rajpurkar®, Awni Hannun*, Masoumeh Haghpanahi, Codie Bourn, lead ECG signals

and Andrew Ng

A collaboration between Stanford University and iRhythm Technologies

We develop a model which can diagnose =~ SNs
irregular heart rhythms, also known as

arrhythmias, from single-lead ECG signals N
better than a cardiologist.

Key to exceeding expert performance is a deep convolutional

network which can map a sequence of ECG samples to a sequence

of arrhythmia annotations along with a novel dataset two orders of
magnitude larger than previous datasets of its kind.

[Rajpurkaretal., arXiv:1707.01836, 2017; Nature Medicine ‘19]



Neural networks in a picture
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Convolutions for 2D data

(24.24) (21'21) (1, 1)
s L+ b e f et bl
. i (7.7) (4.4)
Convolution Y1
o 2 M P Pooling ' ‘ ¥2
b dy 3 E Pooling
e Convolution $i=5, =4
K, =K, =4
Y J\ Y J\ Y J\ Y I v I\ Y J
Input Image 1* Convolution Layer 1* Pooling Layer 2" Convolution Layer 2™ Pooling  Fully-connected

Layer and Output Layers



Using stacks of 1D
convolutions to make
predictions
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Example of 1D convolution

=<1,0,1>*<2,3,1>=1*2+ 0*3+ 1*1 =

5 03 la |5 |3 Output
Filter EXENNENE
N O S E S O S N 1t
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