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Outline

• Announcements
• Recap of risk stratification in pictures
• Health is a multi-scale problem 
• Time series modeling

• Where does time come into the picture? 
• Time-series data in the ICU
• Time-series data in for chronic disease care and management

• What can machine learning do?
• Next week: Technical dive into time-series models 



Announcements

• In two weeks, project proposals [10% of grade] are due:
• Start forming teams and brainstorming project ideas
• Create an outline for your project proposal
• Link: csc2541hf-2021.github.io/assignments/projectproposal

• In two weeks, we will start having student presentations [15% of 
grade]
• Present in pairs, first to TAs, then to the class
• Link should be active and contain details on where to sign up
• First come first serve for papers
• csc2541hf-2021.github.io/assignments/paperpresentation



Disclaimer

• None of the material present in this course is intended as medical 
advice
• We are a long way away from these learning models being

implemented in hospitals and routine clinical care



Risk stratification

• Example of supervised learning in healthcare
• Use clinical data to define covariates x
• Use data + domain knowledge to define y
• Build model to approximate risk

Patient features

Chest X-ray image

Time to readmission

pneumonia/pneumothorax
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p(y|x)



Outcomes in risk stratification

Binary/Categorical 
outcomes

Real-valued outcomes

Real-valued outcomes 
with censorship

Classification

Regression

Survival Analysis

Nonparametric

Parametric

Semi-parametric



Kaplan Meier estimator

• Derivation out of scope for this class
• Survival analysis is a rich area of research and is often a course in and of itself
• E.g. Lu Tian and Richard Olshen at Stanford

Kaplan-Meier	estimator

• Example	of	a	non-parametric	method;	good	for	
unconditional	density	estimation

[Figure	credit:	Rebecca	Peyser]

Time	t

Survival	
probability,	

S(t)

x=0 x=1

12 2 Classical Survival Analysis

are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci ) and δi = I (Ti ≤ Ci ),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci )’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.

Let yi be the observed value of Yi . Suppose that there are D (D ≤ n) distinct
observed event times y(1) < y(2) < · · · < y(D) among yi ’s. Let d(k) be the number of
events at y(k) (k = 1, . . . , D). Let n(k) be the number of individuals who are at risk
at y(k), that is, the number of individuals who are alive and uncensored just prior to
y(k). The Kaplan–Meier (K–M) estimator of S(t), is defined by

ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n(k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)
n(k){n(k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
smallest observed survival time such that S(ti ) ≤ 1 − p. That is,
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Observed	event	times
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ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n(k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)
n(k){n(k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
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=	#	events	at	this	time	

=	#	of	individuals	alive	
and	uncensored

https://web.stanford.edu/~lutian/coursepdf/survweek1.pdf


Dataset (N=3)

Maximize the following objective function to learn model parameters

Uncensored likelihood

Parametric survival analysis

• Given a dataset, the model parameters are learned via maximum 
likelihood estimation

<latexit sha1_base64="QRlFKTdZFTH2TZmCLuq5ispBsxg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJ jkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcOno2p</latexit>x1
<latexit sha1_base64="AR8bw1iLV+h/TJ1WtHIGvCZC5c0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AECKNqg==</latexit>x2

<latexit sha1_base64="oHKEjBPa1NpTI9acyZHKjpoa4aI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOA0yYnd3M9BrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+ci1EZF6wHHM/ZAOlOgLRtFK90/d826x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/lp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaNs7J3Ua7cVUrV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4AEaaNqw==</latexit>x3
<latexit sha1_base64="i/nlPQeTyxQJxZrfosD8uE+lObI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDtC42T</latexit>

b1
<latexit sha1_base64="y9veZhuzqR5AYaOgJjiqKVIEqPw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Bf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav2uXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wfuj42U</latexit>

b2
<latexit sha1_base64="/QI0cXifb36X49vGC1EOoMocHn4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6D/rn/XLFrbpzkL/Ey0kFcjT65c/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TEKgMSxsqWNGSu/pzIaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW375L2mdVb2Lau2uVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xvwE42V</latexit>

b3

Censored likelihood

<latexit sha1_base64="rP8awo8k2IJC8R3oXKZqbtqRW6U=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4NBSC5hV4IKEgh68RghDyFZwuxkNhky+2CmVwybHPwVLx4U8epvePNvnCR70MSChqKqm+4uNxJcgWV9G5mV1bX1jexmbmt7Z3fP3D9oqjCWlDVoKEJ57xLFBA9YAzgIdh9JRnxXsJY7vJn6rQcmFQ+DOowi5vikH3CPUwJa6ppHUaFegfHjVQcGDEgRV7BXgGLXzFslawa8TOyU5FGKWt f86vRCGvssACqIUm3bisBJiAROBZvkOrFiEaFD0mdtTQPiM+Uks/sn+FQrPeyFUlcAeKb+nkiIr9TId3WnT2CgFr2p+J/XjsG7dBIeRDGwgM4XebHAEOJpGLjHJaMgRpoQKrm+FdMBkYSCjiynQ7AXX14mzbOSfV4q35Xz1es0jiw6RieogGx0garoFtVQA1E0Rs/oFb0ZT8aL8W58zFszRjpziP7A+PwBt2+Unw==</latexit>

p(T = t|x; ✓) = f(t)

<latexit sha1_base64="oXmX8Wdb5kiIUtG0weaYbSJUqV0=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4NBSC5hV4IKogS9eIyYFyRLmJ3MJkNmH8z0iiHJwV/x4kERr/6GN//GSbIHTSxoKKq66e5yI8EVWNa3kVpaXlldS69nNja3tnfM3b2aCmNJWZWGIpQNlygmeMCqwEGwRiQZ8V3B6m7/ZuLXH5hUPAwqMIiY45NuwD1OCWipbR5EucoVjB4vWtBjQPL4Et/nIN82s1bBmgIvEjshWZSg3D a/Wp2Qxj4LgAqiVNO2InCGRAKngo0zrVixiNA+6bKmpgHxmXKG0/vH+FgrHeyFUlcAeKr+nhgSX6mB7+pOn0BPzXsT8T+vGYN37gx5EMXAAjpb5MUCQ4gnYeAOl4yCGGhCqOT6Vkx7RBIKOrKMDsGef3mR1E4K9mmheFfMlq6TONLoEB2hHLLRGSqhW1RGVUTRCD2jV/RmPBkvxrvxMWtNGcnMPvoD4/MHnACUjQ==</latexit>

p(T > t|x; ✓) = S(t)

<latexit sha1_base64="lZxgrcyCx6vgs/EwsMnSaHsbMhE="></latexit>

NX

i=1
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Learning CoxPH with the partial likelihood
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Censored event

Put all patients on a timeline
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R(t) = {j : tj > t}

Intuition: How likely are the features of this patient to explain their elevated risk of having the event occur now
compared to all the individuals whose event occurs later!



Advances in machine learning for survival 
analysis

• DeepSurv, Katzman et. al, 2017
• One of the readings for this week uses a deep neural network to parameterize 

the modification to the hazard function
• Parameter estimation by taking derivatives of the 

• Advanced reading Deep survival analysis, Ranganath et. al, 2016
• What if x is very high dimensional? 
• Rather than condition on x directly, learn a latent representation of x while 

jointly modeling survival time

https://arxiv.org/pdf/1606.00931.pdf
https://proceedings.mlr.press/v56/Ranganath16.html


Evaluation in survival analysis

• Concordance index (aka C-statistic) – predicts how well the model 
ranks patients based on survival (i.e. predicts relative survival time)
• Equivalent to AUC (when there is no censoring)

Evaluation	for	survival	modeling
• Concordance-index	(also	called	C-statistic):	look	at	

model’s	ability	to	predict	relative survival	times:

• Illustration	– blue	lines	denote	pairwise	comparisons:

• Equivalent	to	AUC	for	binary	variables	and	no	censoring

[Wang,	Li,	Reddy.	Machine	Learning	for	Survival	Analysis:	A	Survey.	2017]
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tion performance in survival analysis needs to be measured using more specialized
evaluation metrics.

5.1. C-index
In survival analysis, a common way to evaluate a model is to consider the relative risk
of an event for different instance instead of the absolute survival times for each in-
stance. This can be done by computing the concordance probability or the concordance
index (C-index) [Harrell et al. 1984; Harrell et al. 1982; Pencina and D’Agostino 2004].
The survival times of two instances can be ordered for two scenarios: (1) both of them
are uncensored; (2) the observed event time of the uncensored instance is smaller than
the censoring time of the censored instance [Steck et al. 2008]. This can be visualized
by the ordered graph given in Figure 4. Figure 4(a) and Figure 4(b) are used to illus-

Fig. 4: Illustration of the ranking constraints in survival data for C-index calculations
(y1 < y2 < y3 < y4 < y5). Here, black circles indicate the observed events and red
circles indicate the censored observations. (a) No censored data and (b) with censored
data.

trate the possible ranking comparisons (denoted by edges between instances) for the
survival data without and with censored instances, respectively. There are

�5
2

�
= 10

possible pairwise comparisons for the five instances in the survival data without cen-
sored cases shown in Figure 4(a). Due to the presence of censored instances (repre-
sented by red circles) in Figure 4(b), only 6 out of the 10 comparisons are feasible.
It should be noted that, for a censored instance, only an earlier uncensored instance
(for example y2&y1) can be compared with. However, any censored instance cannot be
compared with both censored and uncensored instances after its censored time (for
example, y2&y3 and y2&y4) since its actual event time is unknown.

Consider both the observations and prediction values of two instances, (y1, ŷ1) and
(y2, ŷ2), where yi and ŷi represent the actual observation time and the predicted value,
respectively. The concordance probability between them can be computed as

c = Pr(ŷ1 > ŷ2|y1 � y2) (20)
By this definition, for the binary prediction problem, C-index will have a similar mean-
ing to the regular area under the ROC curve (AUC), and if yi is binary, then the C-index
is the AUC [Li et al. 2016d]. As the definition above is not straightforward, in practice,
there are multiple ways of calculating the C-index.
(1) When the output of the model is a hazard ratio (such as the outcome obtained by

Cox based models), C-index can be computed using

ĉ =
1

num

X

i:�i=1

X

j:yi<yj

I[Xi�̂ > Xj �̂] (21)

where i, j 2 {1, · · · , N}, num denotes the number of all comparable pairs, I[·] is the
indicator function and �̂ is the estimated parameters from the Cox based models.
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(2) For the survival methods which aim at directly learning the survival time, the
C-index should be calculated as:

ĉ =
1

num

X

i:�i=1

X

j:yi<yj

I[S(ŷj |Xj) > S(ŷi|Xi)] (22)

where S(·) is the estimated survival probabilities.

In order to evaluate the performance during a follow-up period, Heagerty and Zheng
defined the C-index for a fixed follow-up time period (0, t⇤) as the weighted average of
AUC values at all possible observation time points [Heagerty and Zheng 2005]. The
time-dependent AUC for any specific survival time t can be calculated as

AUC(t) = P (ŷi < ŷj |yi < t, yj > t) =
1

num(t)

X

i:yi<t

X

j:yj>t

I(ŷi < ŷj) (23)

where t 2 Ts which is the set of all possible survival times and num(t) represents the
number of comparable pairs for the time point t. Then the C-index during the time
period (0, t⇤), which is the weighted average of the time-dependent AUC obtained by
Eq. (23), is computed as

ct⇤ =
1

num

X

i:�i=1

X

j:yi<yj

I(ŷi < ŷj) =
X

t2Ts

AUC(t) · num(t)

num
(24)

Thus ct⇤ is the probability that the predictions are concordant with their outcomes for
a given data during the time period (0, t⇤).

5.2. Brier Score
Named after the inventor Glenn W. Brier, the Brier score (BS) [Brier 1950] is developed
to predict the inaccuracy of probabilistic weather forecasts. It can only evaluate the
prediction models which have probabilistic outcomes; that is, the outcome must remain
within the range [0,1], and the sum of all the possible outcomes for a certain individual
should be 1. When we consider the binary outcome prediction with a sample of N

instances and for each Xi (i = 1, 2, ..., N), the predicted outcome at t is ŷi(t), and the
actual outcome is yi(t); then, the empirical definition of the Brier score at the specific
time t can be given by

BS(t) =
1

N

NX

i=1

[ŷi(t)� yi(t)]
2 (25)

where the actual outcome yi(t) for each instance can only be 1 or 0.
Brier score was extended in [Graf et al. 1999] to be a performance measure for sur-

vival problems with censored information to evaluate the prediction models where the
outcome to be predicted is either binary or categorical in nature. When incorporating
the censoring information in the dataset, the individual contributions to the empiri-
cal Brier score are reweighted according to the censored information. Then, the Brier
score can be updated as follows:

BS(t) =
1

N

NX

i=1

wi(t)[ŷi(t)� yi(t)]
2 (26)

In Eq.(26), wi(t), given in Eq. (27), denotes the weight for the i
th instance and it is

estimated by incorporating the Kaplan-Meier estimator of the censoring distribution
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possible pairwise comparisons for the five instances in the survival data without cen-
sored cases shown in Figure 4(a). Due to the presence of censored instances (repre-
sented by red circles) in Figure 4(b), only 6 out of the 10 comparisons are feasible.
It should be noted that, for a censored instance, only an earlier uncensored instance
(for example y2&y1) can be compared with. However, any censored instance cannot be
compared with both censored and uncensored instances after its censored time (for
example, y2&y3 and y2&y4) since its actual event time is unknown.

Consider both the observations and prediction values of two instances, (y1, ŷ1) and
(y2, ŷ2), where yi and ŷi represent the actual observation time and the predicted value,
respectively. The concordance probability between them can be computed as

c = Pr(ŷ1 > ŷ2|y1 � y2) (20)
By this definition, for the binary prediction problem, C-index will have a similar mean-
ing to the regular area under the ROC curve (AUC), and if yi is binary, then the C-index
is the AUC [Li et al. 2016d]. As the definition above is not straightforward, in practice,
there are multiple ways of calculating the C-index.
(1) When the output of the model is a hazard ratio (such as the outcome obtained by

Cox based models), C-index can be computed using
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where i, j 2 {1, · · · , N}, num denotes the number of all comparable pairs, I[·] is the
indicator function and �̂ is the estimated parameters from the Cox based models.
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(2) For the survival methods which aim at directly learning the survival time, the
C-index should be calculated as:

ĉ =
1
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X
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j:yi<yj

I[S(ŷj |Xj) > S(ŷi|Xi)] (22)

where S(·) is the estimated survival probabilities.

In order to evaluate the performance during a follow-up period, Heagerty and Zheng
defined the C-index for a fixed follow-up time period (0, t⇤) as the weighted average of
AUC values at all possible observation time points [Heagerty and Zheng 2005]. The
time-dependent AUC for any specific survival time t can be calculated as

AUC(t) = P (ŷi < ŷj |yi < t, yj > t) =
1

num(t)

X

i:yi<t

X

j:yj>t

I(ŷi < ŷj) (23)

where t 2 Ts which is the set of all possible survival times and num(t) represents the
number of comparable pairs for the time point t. Then the C-index during the time
period (0, t⇤), which is the weighted average of the time-dependent AUC obtained by
Eq. (23), is computed as
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Thus ct⇤ is the probability that the predictions are concordant with their outcomes for
a given data during the time period (0, t⇤).

5.2. Brier Score
Named after the inventor Glenn W. Brier, the Brier score (BS) [Brier 1950] is developed
to predict the inaccuracy of probabilistic weather forecasts. It can only evaluate the
prediction models which have probabilistic outcomes; that is, the outcome must remain
within the range [0,1], and the sum of all the possible outcomes for a certain individual
should be 1. When we consider the binary outcome prediction with a sample of N

instances and for each Xi (i = 1, 2, ..., N), the predicted outcome at t is ŷi(t), and the
actual outcome is yi(t); then, the empirical definition of the Brier score at the specific
time t can be given by

BS(t) =
1

N

NX

i=1

[ŷi(t)� yi(t)]
2 (25)

where the actual outcome yi(t) for each instance can only be 1 or 0.
Brier score was extended in [Graf et al. 1999] to be a performance measure for sur-

vival problems with censored information to evaluate the prediction models where the
outcome to be predicted is either binary or categorical in nature. When incorporating
the censoring information in the dataset, the individual contributions to the empiri-
cal Brier score are reweighted according to the censored information. Then, the Brier
score can be updated as follows:

BS(t) =
1

N

NX

i=1

wi(t)[ŷi(t)� yi(t)]
2 (26)

In Eq.(26), wi(t), given in Eq. (27), denotes the weight for the i
th instance and it is

estimated by incorporating the Kaplan-Meier estimator of the censoring distribution
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Other ways to evaluate models

• Mean squared error [for just those who are uncensored]
• Held out likelihood (censored + uncensored) 



Application to risk stratification for diabetes 
from electronic health records

• Predict the onset of diabetes from patient covariates
• Use to create personalized interventions for patients

• Request they see care provider for personalized treatment plan
• Modifications to diet with a smartphone app

• Advantages (wrt traditional risk stratification models): 
• Scalable (not limited to point of care) 

• Limitations: 
• Covariate shift across time
• Covariate shift across populations
• Hidden confounding



Questions?



Health is a 
multi-scale 

problem

Time/Severity of disease

Genetics

Lab
testsImaging

Clinical
notes

Scales
of the
human
body

Population statistics

How can we build 
models to capture 

complex patient data?



Time in healthcare

• If you’re visiting the doctor just once, your visit may fall into one of 
the following:
• Annual check up,
• A minor issue that needs a referral,
• A very severe issue (intensive trauma, late stage cancer) that is too late to be 

treated,

• In reality, many problems in healthcare involve time-varying (or
longitudinal data).



Time-series data in healthcare

• Population level: 
• Infection statistics for various diseases are tracked at the local, provincial,

federal level
• Used to inform and guide policy decisions

• Hospital level:
• Weekly admission statistics to the emergency department are tabulated, 

tracked and forecast
• Used to guide weekly staffing policies. e.g. nurse schedules

• Individual level:
• Critical care
• Chronic diseases



Patients in critical care units



Time-series data in critical care patients

• Often suffer from one or more severe conditions underlying the 
reason they are in the ICU,
• The goal of doctors in the ICU is often twofold: 

• Keep patient state stable
• Treat the underlying disease burden

• Many different sensors, each tracking a different physiologic time-
varying signal 
• Many examples of data that are sampled and tracked at a high-

frequency



Physiological time-series data 1 [cardiology]

• Electrocardiogram: 
• A simple way to evaluate the functioning of the heart
• Electrodes placed at different parts of the body and measure/interpret heart 

functioning
• Why does it work: Natural electric impulses govern contractions of the heart. 

By measuring them, we can assess how fast it is beating, the rhythm of the 
heartbeat and the strength of the pulses 

• Diseases: Congestive heart failure
• Type of data: continuous time



Physiological time-series data 2 [cardiology]

• An ECG is often (but not always) abnormal in patients w heart failure 
• B-type natriuretic peptide (BNP) belongs to a family of protein 

hormones called natriuretic peptides.
• Regulate circulation of the blood causing them to dilate
• Also have an effect on the kidneys
• Play a role in reducing the heart’s workload
• Helps the body handle congestive heart failure

• Normal BNP is useful to rule out hypotheses
• High BNP can be informative but not always conclusive
• Type of data: discrete time

Source: https://www.health.harvard.edu/newsletter_article/bnp-an-important-new-cardiac-test



Comparison to risk scores

Source: https://www.ahajournals.org/doi/10.1161/01.CIR.0000019121.91548.C2

“single BNP level was more accurate than both the 
National Health and Nutrition Examination Score 
and Framingham, arguably the two criteria most 
commonly used to diagnose CHF” 



Physiological time-series data 3 [cardiology]

• Transthoracic echocardiography (TTE)
• Widely used diagnostic tests in cardiology. Ultrasound of the heart
• Characterize size and shape of the heart, pumping capacity, and the location 

of any tissue damage

• Type of data: video [time series of images]

Source: Role of Echocardiography in the Intensive Care Unit: Overview of the Most Common Clinical Scenarios
,Longobardo et. al, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664324/



Questions?



Patients suffering from chronic diseases 

• Chronic diseases are defined 
broadly as conditions that last 1 
year or more and:
• Require ongoing medical attention 
• Limit activities of daily living
• Both of the above

• The American Cancer Society 
views cancer as a chronic 
disease when the cancer can be 
controlled with treatment, 
becomes stable, or reaches 
remission.
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<latexit sha1_base64="K7O9coyOMbx5PDqXhB3Kh+odSaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0kkoMeiF48V7Qe0oWy2k3bpZhN2N2Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujet+O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+HoZua3HlFpnsgHM04xiOlA8ogzaqx0/9Tze+WKW3XnIKvEy0kFctR75a9uP2FZjNIwQbXueG5qgglVhjOB01I305hSNqID7FgqaYw6mMxPnZIzq/RJlChb0pC5+ntiQmOtx3FoO2NqhnrZm4n/eZ3MRFfBhMs0MyjZYlGUCWISMvub9LlCZsTYEsoUt7cSNqSKMmPTKdkQvOWXV0nzour5Vf/Or9Su8ziKcAKncA4eXEINbqEODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMSgo2q</latexit>

Clinical
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Treatments
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<latexit sha1_base64="FXfXo9ej6bXI1DIjZj3pFrH0zXE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIR14g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVa9Wrd3XKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAJZI2k</latexit>
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<latexit sha1_base64="0LAF+n1DgVbyAmVaEpZBnKj13Rg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIR3UBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVa9erd/XK42bPI4inME5XIIHV9CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gAK6I2l</latexit>

u3

<latexit sha1_base64="DkA/tGTvdSpUvFSn2G44At0EvP0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuql6tWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEMbI2m</latexit>

Chronic Disease Management – (1) 

• Canonical picture that characterizes how healthcare data behave
• Interesting and useful structure in how chronic diseases are treated



Chronic Disease Management – (2) 

• Treatments are often grouped across time
• Each line denotes an implicit plan that the clinician has on how to 

treat a patient 
• The first line of therapy is generally what is recommended by clinical 

trials based on a match between patient characteristics and trial 
cohorts



Chronology of chronic disease therapy

First line therapy

x1

<latexit sha1_base64="3c+R7TUljyGse9TtnSD6PbvAzD0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuql6tWrurVerXeRxFOIFTOAcPLqEOt9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AEN9o2n</latexit>

x2

<latexit sha1_base64="o3wFLFaKyKBrwbQ6JfdiLDWtk1E=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY9FLx4r2lZoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMb6IaCGS6F4CwVK/pBoTqNA8k4wvp75nUeujYjVPU4S7kd0qEQoGEUr3T31a/1yxa26c5BV4uWkAjma/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz0M6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0m7VvXq1fptvdK4yuMowgmcwjl4cAENuIEmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w8Peo2o</latexit>

x3

<latexit sha1_base64="2usqR2oczGZrEREbzbs5WH3GM8c=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokW9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/ql30SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTTPK161Ur2rlmvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMQ/o2p</latexit>

Treatments

u1

<latexit sha1_base64="FXfXo9ej6bXI1DIjZj3pFrH0zXE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIR14g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4U zgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVa9Wrd3XKo2bPI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAJZI2k</latexit>
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<latexit sha1_base64="0LAF+n1DgVbyAmVaEpZBnKj13Rg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQY9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIR3UBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVa9erd/XK42bPI4inME5XIIHV9CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gAK6I2l</latexit>
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<latexit sha1_base64="DkA/tGTvdSpUvFSn2G44At0EvP0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuql6tWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEMbI2m</latexit>

Clinical
Observations

Second line therapy

<latexit sha1_base64="KTEE9qLTTWCBS8OaaUC1UgCPYAQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9Vj04rGi/YA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdP/WqvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrnFe+iUr2rlmvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QMTKo2s</latexit>x4
<latexit sha1_base64="vpUFnN3T4zTqOFqbssXBi7JAqLM=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4xyiOBDZkdGpgwO7uZmTWSDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPRzdRvPqLSPJIPZhyjH9KB5H3OqLHS/VP3vFssuWV3BrJMvIyUIEOtW/zq9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUJOrNIj/UjZkobM1N8TKQ21HoeB7QypGepFbyr+57UT07/yUy7jxKBk80X9RBATkenfpMcVMiPGllCmuL2VsCFVlBmbTsGG4C2+vEwaZ2Xvoly5q5Sq11kceTiCYzgFDy6hCrdQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBFK6NrQ==</latexit>x5

<latexit sha1_base64="2azxCxWsaN6Af1vVZpjY5FYhTgc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNQY9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi7JXLVfuKqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AFjKNrg==</latexit>x6

<latexit sha1_base64="/EhBpTypBVxrPZaTXlNFtvVnh70=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPZr/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AEOmI2p</latexit>u4
<latexit sha1_base64="hZJkZULXvmzwTRIVecD8TPq+d4c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHsXvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Xqnd5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcQHI2q</latexit>u5

<latexit sha1_base64="LMEfZwAPYJSqMBZiVKCBzdDrqpg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPZr/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVa9Wvby/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMRoI2r</latexit>u6

Progression
event



Progression events  

• Progression events mark the failure of a line of therapy
• Death
• Patient did not respond
• Patient cannot tolerate the medication

• Move onto the next line of medication 
• Chronic disease care is personalized by care providers



Diabetes care and management

• Biomarkers: 
• Blood sugar (A1C) levels

• Interventions
• First line: Metformin 
• Second line: 

• Combination therapy: Metformin + Sulfonylurea drug

Source: https://www.cadth.ca/sites/default/files/pdf/second_line_therapy_for_type_2_diabetes_in_brief_e.pdf



What does this mean for data?

• Chronic disease care involves data collection at regular time intervals 
• Typically, intervals between data are a few weeks or months

• Data types: 
• Longitudinal lab-values and treatments
• Genetics
• Imaging



Questions?



Disease registries

Time-series datasets

PhysioNet/MIMIC

Multiple Myeloma 
Research Foundation

Multiple Myeloma 
Research Foundation



Tasks for machine learning

• Risk stratification with time-series data
• All the same techniques we saw previously except our conditioning set x now

comprises a time-series

• Pattern discovery in time-series data
• K-means is easy to apply on static data
• What about noisy, missing, time-varying data? 

• Forecasting
• Can we use statistical models to predict how a patient might evolve over time
• Counterfactual reasoning is an important topic

• Condition on aspects of the data that can change how observations behave over time



Challenges for machine learning 

• Clinical decision making is multi-modal
• Frequency of observations and interventions can vary dramatically: 

• Intensive care unit: Observations and interventions happening in real-time
• High-frequency data 

• Chronic disease management: Observations and interventions happen over 
the span of months or years
• Low-frequency data

• Missingness is rampant 
• ICU: sensor noise
• Chronic disease management: administrative errors, access to health 

insurance



Discussion on data

• Start time of data = start time of disease
• Is this correct? 

• End time of data = end time of disease
• Is this correct? 

Keep an eye out for left and right 
censorship! 



Questions?

Wednesday: deep dive into technical topics for 
time-series analysis

Friday: open tutorial session for project 
brainstorming (we’ll split up the classroom into 

three groups) 


