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Last week
• Supervised machine learning

• Risk stratification
• Stratification as a prediction 

problem
• Case study: Predicting the onset 

of diabetes



Outline

• Clarification to questions 
• Risk stratification 
• Deriving labels
• Evaluating models

• Survival analysis: 
• From binary to continuous valued outcomes
• Parametric
• Non-parametric 
• Semi-parametric



Questions from last week

• Is there structure among diagnosis codes: 
• Yes! They are organized in a hierarchy. View ICD10 codes here

• Using predictive models in the future (on different data):
• Non-stationarity of data is a challenging problem

• Means that data distribution changes in unpredictable ways over time
• Covariate shift can tank good machine learning models deployed in clinics
• Still a lot of research on good techniques for detection of covariate shift

https://www.icd10data.com/ICD10CM/Codes


Deriving labels for risk stratification

Data Collection Period:
Patient variables built 

from data in this period

Gap period 
between 

data collection 
and outcome 
evaluation

T T+W
Diabetes Onset

Patient C *
Patient B -
Patient A +

Patient D -
Patient E *
Patient F *
Patient G *

Patient 
outcome 

evaluated in 
this period

This	is	an	example	of	alignment	by	absolute	time

Reduction	to	binary	classification
Exclude	patients	that	are	left- and	right-censored.

• Typically done via chart review
• Work with doctor to assess criteria that constitute Diabetic Onset
• e.g. does the patient have ICD10 code for diabetes



Evaluation of risk stratification models

Step	1:
Visualization	of	individual	patient	data	is	

an	important	part	of	chart	review

Demographic	information
Patient	events	list

Events,	as	they	occur	for	the	first	time	in	patient	history	

https://github.com/nyuvis/patient-viz



Evaluation of risk stratification modelsReceiver-operator	characteristic	curve

Full	model
Traditional	risk	factors

False	positive	rate

True	
positive	
rate

Want	to	be	here Obtained	by	
varying	
prediction	
threshold

Diabetes
1-year	gap

AUC = Area under the ROC curve
- Invariant to class imbalance

- Interpretable as the probability that an 
algorithm ranks a positive patient over a 

negative patient



Where you want to be on ROC curveReceiver-operator	characteristic	curve

Full	model		AUC=0.78
Traditional	risk	factors
AUC	=	0.74

False	positive	rate

True	
positive	
rate

Random	AUC	=	0.5

Risk	
stratification
usually	focuses	
on	just	this	
region

(because	of	the	
cost	of	
interventions)

Diabetes
1-year	gap



Many other important statistical 
considerations when building models

• Calibration 
• Sensitivity analysis
• Error bars and confidence intervals on prediction estimates
• Heterogeneity of results: 
• Does the model only work well for a subpopulation?

• Model introspection: 
• For a linear model, are the features used by the models the ones you might 

expect?
• Do root nodes in a decision tree make sense? 
• More challenging to do for deep neural networks



The importance of interpretability

• Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 
30-day Readmission, Caruana et. Al, KDD 2015
• Used generalized additive models to make predictions of pneumonia and 

readmission
• Learn HasAsthma(x) = LowerRiskOfDying(x) 
• Why? 

• Asthmatics w/ pneumonia are prioritized 
• Get aggressive treatment, faster, in ICU
• Treatment lowers risk of death compared to general population 

• Scenario where the prescription of an intervention taints the outcomes
• The consequence: 

• Automated methods might flag asthmatics as not being problematic!

https://dl.acm.org/doi/10.1145/2783258.2788613


Questions?



Continuous valued outcomes for risk 
stratification

Data Collection Period:
Patient variables built 

from data in this period

Gap period 
between 

data collection 
and outcome 
evaluation

T T+W
Diabetes Onset

Patient C *
Patient B -
Patient A +

Patient D -
Patient E *
Patient F *
Patient G *

Patient 
outcome 

evaluated in 
this period

This	is	an	example	of	alignment	by	absolute	time

Reduction	to	binary	classification
Exclude	patients	that	are	left- and	right-censored.

More natural to define patient 
outcomes as the time taken to reach a 

clinical endpoint

Time to re-admission

Time to death

Time to progression of disease



Labels are partially missing!

• We may not observe the outcome in the dataset – life, administrative 
challenges etc. 

Survival	modeling

• We	focus	on	right-censored data:

1:4 P. Wang et al.

their time to event is greater than the observation time, we can only have the censored
time (C) which may be the time of withdrawn, lost or the end of the observation. They
are considered to be censored instances in the context of survival analysis. In other
words, here, we can only observe either survival time (Ti) or censored time (Ci) but
not both, for any given instance i. If and only if yi = min(Ti, Ci) can be observed during
the study, the dataset is said to be right-censored, which is a common scenario that
arises in many practical problems [Marubini and Valsecchi 2004].

In Figure 1, an illustrative example is given for a better understanding of the def-
inition of censoring and the structure of survival data. Six instances are observed in
this longitudinal study for 12 months and the event occurrence information during this
time period is recorded. From Figure 1, we can find that only subjects S4 and S6 have
experienced the event (marked by ‘X’) during the follow-up time and the observed time
for them is the event time. While the event did not occur within the 12 months period
for subjects S1, S2, S3 and S5, which are considered to be censored and marked by red
dots in the figure. More specifically, subjects S2 and S5 are censored since there was
no event occurred during the study period, while subjects S1 and S3 are censored due
to the withdrawal or being lost to follow-up within the study time period.

Fig. 1: An illustration to demonstrate the survival analysis problem.

Problem Statement: For a given instance i, represented by a triplet (Xi, yi, �i),
where Xi 2 R1⇥P is the feature vector; �i is the binary event indicator, i.e., �i = 1 for
an uncensored instance and �i = 0 for a censored instance; and yi denotes the observed
time and is equal to the survival time Ti for an uncensored instance and Ci otherwise,
i.e.,

yi =

⇢
Ti if �i = 1
Ci if �i = 0

(1)

It should be noted that Ti is a latent value for censored instances since these instances
did not experience any event during the observation time period.

The goal of survival analysis is to estimate the time to the event of interest Tj for
a new instance j with feature predictors denoted by Xj . It should be noted that, in
survival analysis problem, the value of Tj will be both non-negative and continuous.

2.2. Survival and Hazard Function
The survival function, which is used to represent the probability that the time to the
event of interest is not earlier than a specified time t [Lee and Wang 2003; Klein and
Moeschberger 2005], is one of the primary goals in survival analysis. Conventionally,

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

[Wang,	Li,	Reddy.	Machine	Learning	for	Survival	Analysis:	A	Survey.	2017]

Event	occurrence
e.g.,	death,	divorce,	college	graduation

Censoring

T

Event observed

Event not observed

This kind of missingness is known as 
right censorship!



Censorship

• Censorship is an important to know about when handling longitudinal data
• Three types of censorship: 

• Left censored data: 
• We don’t observe the start of an event but we do observe longitudinal data after it
• Example: ICU patient’s vitals are continuously recorded from when the enter. If one of the 

sensor fails and is later fixed, their data is left censored
• Right censored data [focus for today]

• We don’t observe the incidence of an event but we know it occurs after the last observed 
time

• Example: We want to predict time-to-death in the ICU as our outcome but not all people die, 
some survive and leave the ICU at a certain time

• Interval censored data: 
• Both left and right censorship 
• Example: Neonatal unit is tracking data on children, observe data sometime after they are 

born and until they leave the unit (for those who survive)



What can we do when we do not observe 
when the event occurs?

• What do we know: 
• x: features
• y: last observed time
• b: whether or not the event occurs

• Option: why not throw away all datapoints for which we don’t know 
when the event occurs: 
• Wasteful, might end up with very little data

• Key idea behind survival analysis: 
• Learn to predict time-to-event using all the available data that we have



Survival analysis

• To develop the ideas around survival analysis, we’ll need some tools 
from probability theory,
• Our goal is to predict a continuous outcome: 
• We’ll use random variable T to denote event time
• We’ll assume that an event can only occur in the future i.e. T > 0 

• Next slide will introduce probabilistic concepts



Preliminaries – (1) - Notation

• (x, T, b) = (features, time, censoring)
• b = 0 if censored and b = 1 if event is observed

• f(t) = p(t) = probability of death at time t; F(t) = P(T<=t) = CDF of t
• Survival function:
• Hazard function: 
• Cumulative hazard function: 
• Hazard function & survival function: 

<latexit sha1_base64="9Mg2ZDheR9MGGmzSefF/OO5FpUw=">AAACEXicbZDLSgMxFIYzXmu9VV26CRZhuikzUtSNUnTjsmJv0NaSSTNtaCYzJGekZegruPFV3LhQxK07d76N6WWhrQdCPv7/HJLze5HgGhzn21paXlldW09tpDe3tnd2M3v7VR3GirIKDUWo6h7RTHDJKsBBsHqkGAk8wWpe/3rs1x6Y0jyUZRhGrBWQruQ+pwSM1M7Ydzbk8AUu2eXLCTS5hDbcJ+b2YTjCvj3I4c4g3c5knbwzKbwI7gyyaFalduar2QlpHDAJVBCtG64TQSshCjgVbJRuxppFhPZJlzUMShIw3UomG43wsVE62A+VORLwRP09kZBA62Hgmc6AQE/Pe2PxP68Rg3/eSriMYmCSTh/yY4EhxON4cIcrRkEMDRCquPkrpj2iCAUT4jgEd37lRaie5N3TfOG2kC1ezeJIoUN0hGzkojNURDeohCqIokf0jF7Rm/VkvVjv1se0dcmazRygP2V9/gD/qZqo</latexit>

S(t) = P (T > t) =

Z 1

t
f(x)dx

<latexit sha1_base64="4R5nMymQh3fhUTxGI00VU4v5S8I="></latexit>

h(t) = lim
✏!0

p(T 2 (t, t+ ✏]|T � t)

<latexit sha1_base64="Uc+FL0/GeaA8/j80A6vkmlvh51g=">AAACAXicbVDLSgMxFL1TX7W+Rt0IboJFqJsyI0XdCEU3LivaB7RDyaSZNjSTGZKMUIa68VfcuFDErX/hzr8xbWehrQcSTs65l5t7/JgzpR3n28otLa+sruXXCxubW9s79u5eQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8HriNx+oVCwS93oUUy/EfcECRrA2Utc+GJT0CbpEnUBikgbmMU7vJnfXLjplZwq0SNyMFCFDrWt/dXoRSUIqNOFYqbbrxNpLsdSMcDoudBJFY0yGuE/bhgocUuWl0w3G6NgoPRRE0hyh0VT93ZHiUKlR6JvKEOuBmvcm4n9eO9HBhZcyESeaCjIbFCQc6QhN4kA9JinRfGQIJpKZvyIywCYLbUIrmBDc+ZUXSeO07J6VK7eVYvUqiyMPh3AEJXDhHKpwAzWoA4FHeIZXeLOerBfr3fqYleasrGcf/sD6/AEztJV5</latexit>

h(t) =
f(t)

S(t)

5

Relationships between survival and hazard functions

• Hazard function: h(t) = f(t)/S(t).

• Cumulative hazard function

H(t) =

∫ t

0
h(u)du =

∫ t

0

f(u)

S(u)
du =

∫ t

0

−dS(u)

S(u)
du = − log{S(t)}

• f(t) = h(t)S(t) = h(t) exp{−H(t)}

• S(t) = exp{−H(t)}.

Slide credit: Lu Tian and Richard Olshen’s course on survival analysis
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Preliminaries – (2) - Visualization
Notation	and	formalization

• f(t)	=	be	the	probability	of	death	at	time	t
• Survival	function:

2.1 Hazard and Survival Function 9

2.1 Hazard and Survival Function

We first present the basic definitions of survival and hazard function and their rela-
tionships, which are the fundamental quantities for parametric and nonparametric
inference on survival data.

Assume that failure time T is a nonnegative continuous random variable with a
density function f (t) and a corresponding distribution function F(t) = P(T ≤ t).
The survival function of T , the probability of an individual surviving beyond time t
or not experiencing a failure up to time t , is defined by

S(t) = P(T > t) =
∫ ∞

t
f (x)dx .

For a distribution of lifetimes of an industrial item, S(t) is referred to as the reliability
function of T (Crowder et al. 1991). From the definition of F(t), we have that

S(t) = 1 − P(an individual fails before or at t) = 1 − F(t).

Notice that S(t) is a monotonically decreasing continuous function with

S(0) = 1 and S(∞) = limt→∞S(t) = 0.

The hazard function is defined by

λ(t) = lim%t→0
P(t ≤ T < t + %t |T ≥ t)

%t

= lim%t→0
P(t ≤ T < t + %t)/%t

P(T ≥ t)

= f (t)
S(t)

which is the instantaneous failure rate at time t , given the individual surviving just
prior to t . In particular, λ(t)%t is the approximate probability of dying in [t, t + %t),
given survival just prior to time t . The hazard function is also referred as the hazard
rate, failure rate, the force of mortality, and intensity function. The corresponding
cumulative (or integrated) hazard function is defined as

!(t) =
∫ t

0
λ(x)dx .

From the definition λ(t) = f (t)/S(t), we have the following relationships:

λ(t) = − d
dt

log S(t)

[Ha,	Jeong,	Lee.	Statistical	Modeling	of	Survival	Data	with	Random	Effects.	Springer	2017]

Machine Learning for Survival Analysis: A Survey 1:5

survival function is represented by S, which is given as follows:

S(t) = Pr(T � t). (2)

The survival function monotonically decreases with t, and the initial value is 1 when
t = 0, which represents the fact that, in the beginning of the observation, 100% of the
observed subjects survive; in other words, none of the events of interest have occurred.

On the contrary, the cumulative death distribution function F (t), which represents
the probability that the event of interest occurs earlier than t, is defined as F (t) =
1� S(t), and death density function can be obtained as f(t) = d

dtF (t) for continuous
cases, and f(t) = [F (t+�t)� F (t)]/�t, where �t denotes a small time interval, for
discrete cases. Figure 2 shows the relationship among these functions.

Time in years

Fig. 2: Relationship among different entities f(t), F (t) and S(t).

In survival analysis, another commonly used function is the hazard function (h(t)),
which is also called the force of mortality, the instantaneous death rate or the condi-
tional failure rate [Dunn and Clark 2009]. The hazard function does not indicate the
chance or probability of the event of interest, but instead it is the rate of event at time
t given that no event occurred before time t. Mathematically, the hazard function is
defined as:

h(t) = lim
�t!0

Pr(t  T < t+�t | T � t)

�t
= lim

�t!0

F (t+�t)� F (t)

�t · S(t) =
f(t)

S(t)
(3)

Similar to S(t), h(t) is also a non-negative function. While all the survival functions,
S(t), decrease over time, the hazard function can have a variety of shapes. Consider
the definition of f(t), which can also be expressed as f(t) = � d

dtS(t), so the hazard
function can be represented as:

h(t) =
f(t)

S(t)
= � d

dt
S(t) · 1

S(t)
= � d

dt
[lnS(t)]. (4)

Thus, the survival function defined in Eq. (2) can be rewritten as

S(t) = exp(�H(t)) (5)

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: March 2017.

[Wang,	Li,	Reddy.	Machine	Learning	for	Survival	Analysis:	A	Survey.	2017]



What is a hazard function?

• Different from the probability density of event time (t)
• h(t) dt is approximately the conditional probability of the event 

occurring in an infinitesimal interval around t conditional on it not 
having occurred before t



Lecture restart [Sept 17]
Announcements

• Continue our discussion on survival analysis
• Watch MIMIC data and analysis tutorials [posted to course website]

• Discussion with Alistair Johnson, Scientist, SickKids Hospital 

• Upcoming deadline [October 1, 2021]: Project proposal due
• 10% of your grade
• Piazza now has a pinned post to help you start looking for teammates to work on 

problems – make use of it
• Start to form groups of 3-4 people to work together on a problem and come up with 

a candidate proposal,
• Does not have to be exactly what the final project will look like, just some ideas on 

what are interesting problems and how you’ll tackle them, 
• Use TA office hours! Dataset questions, project idea brainstorming

https://alistairewj.github.io/


Project resources

• Cancer: 
• COMMpass study: https://themmrf.org/finding-a-cure/our-work/the-mmrf-

commpass-study/
• Starter code for processing data from the study: 

https://github.com/clinicalml/ml_mmrf

• Parkinson’s disease
• https://www.ppmi-info.org/

• APPLY EARLY FOR ACCESS!

https://themmrf.org/finding-a-cure/our-work/the-mmrf-commpass-study/
https://github.com/clinicalml/ml_mmrf
https://www.ppmi-info.org/


Non-parametric survival analysis

• Let start by ignoring our features and asking about computing S(t)
• S(t) is an integral

• Idea: If we had access to f(x) we could discretize time and evaluate f(x) in 
each bin and sum them up.

• Issue: We don’t have access to f(x) but we do have samples! 
• Kaplan Meier curves: 
• Non-parametric estimator of the survival function S(t) 

• We do not assume anything about the underlying distribution of S(t)
• We’ll use our entire dataset to approximate the shape of S(t) 

<latexit sha1_base64="9Mg2ZDheR9MGGmzSefF/OO5FpUw=">AAACEXicbZDLSgMxFIYzXmu9VV26CRZhuikzUtSNUnTjsmJv0NaSSTNtaCYzJGekZegruPFV3LhQxK07d76N6WWhrQdCPv7/HJLze5HgGhzn21paXlldW09tpDe3tnd2M3v7VR3GirIKDUWo6h7RTHDJKsBBsHqkGAk8wWpe/3rs1x6Y0jyUZRhGrBWQruQ+pwSM1M7Ydzbk8AUu2eXLCTS5hDbcJ+b2YTjCvj3I4c4g3c5knbwzKbwI7gyyaFalduar2QlpHDAJVBCtG64TQSshCjgVbJRuxppFhPZJlzUMShIw3UomG43wsVE62A+VORLwRP09kZBA62Hgmc6AQE/Pe2PxP68Rg3/eSriMYmCSTh/yY4EhxON4cIcrRkEMDRCquPkrpj2iCAUT4jgEd37lRaie5N3TfOG2kC1ezeJIoUN0hGzkojNURDeohCqIokf0jF7Rm/VkvVjv1se0dcmazRygP2V9/gD/qZqo</latexit>

S(t) = P (T > t) =

Z 1

t
f(x)dx



Kaplan Meier estimator

• Derivation out of scope for this class
• Survival analysis is a rich area of research and is often a course in and of itself
• E.g. Lu Tian and Richard Olshen at Stanford

Kaplan-Meier	estimator

• Example	of	a	non-parametric	method;	good	for	
unconditional	density	estimation

[Figure	credit:	Rebecca	Peyser]

Time	t

Survival	
probability,	

S(t)

x=0 x=1

12 2 Classical Survival Analysis

are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci ) and δi = I (Ti ≤ Ci ),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci )’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.

Let yi be the observed value of Yi . Suppose that there are D (D ≤ n) distinct
observed event times y(1) < y(2) < · · · < y(D) among yi ’s. Let d(k) be the number of
events at y(k) (k = 1, . . . , D). Let n(k) be the number of individuals who are at risk
at y(k), that is, the number of individuals who are alive and uncensored just prior to
y(k). The Kaplan–Meier (K–M) estimator of S(t), is defined by

ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n(k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)
n(k){n(k) − d(k)}

.

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
smallest observed survival time such that S(ti ) ≤ 1 − p. That is,
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Observed	event	times
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What do we do if we have features (x)?

Dataset 
(N=100)

Dataset [x=0] 
(N=35)

Dataset [x=1] 
(N=65)

Evaluate KM estimator on each strata

Kaplan-Meier	estimator

• Example	of	a	non-parametric	method;	good	for	
unconditional	density	estimation

[Figure	credit:	Rebecca	Peyser]
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Right [survival probability of patients who have 
multiple myeloma stratified by genetic marker] Figure credit: Rebecca Boiarsky



What if x is high-dimensional?

• Option 1: Cluster x and stratify based on clusters of x
• Option 2: Let the survival function depend on x
• This idea is used in linear regression! 
• In linear regression: 
• Outcome is a Gaussian function centered around [w^Tx + b]
• Known as a parametric model for y: 

• There are some parameters that govern the behavior of y as a function of x
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y ⇠ N (wTx+ b; 1)



Dataset (N=3)

Solve this optimization problem to learn
the model. Often formulated as a minimization

of the negative of the log-likelihood function

Score function (high is good, low is bad)

Maximum likelihood estimation for supervised learning

• Given a dataset, the model parameters are learned via maximum 
likelihood estimation
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Dataset (N=3)

Maximize the following objective function to learn model parameters

Uncensored likelihood

Maximum likelihood estimation for survival analysis

• Given a dataset, the model parameters are learned via maximum 
likelihood estimation
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<latexit sha1_base64="i/nlPQeTyxQJxZrfosD8uE+lObI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDtC42T</latexit>

b1
<latexit sha1_base64="y9veZhuzqR5AYaOgJjiqKVIEqPw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Bf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav2uXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wfuj42U</latexit>

b2
<latexit sha1_base64="/QI0cXifb36X49vGC1EOoMocHn4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6D/rn/XLFrbpzkL/Ey0kFcjT65c/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TEKgMSxsqWNGSu/pzIaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW375L2mdVb2Lau2uVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xvwE42V</latexit>

b3

Censored likelihood

<latexit sha1_base64="rP8awo8k2IJC8R3oXKZqbtqRW6U=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4NBSC5hV4IKEgh68RghDyFZwuxkNhky+2CmVwybHPwVLx4U8epvePNvnCR70MSChqKqm+4uNxJcgWV9G5mV1bX1jexmbmt7Z3fP3D9oqjCWlDVoKEJ57xLFBA9YAzgIdh9JRnxXsJY7vJn6rQcmFQ+DOowi5vikH3CPUwJa6ppHUaFegfHjVQcGDEgRV7BXgGLXzFslawa8TOyU5FGKWtf86vRCGvssACqIUm3bisBJiAROBZvkOrFiEaFD0mdtTQPiM+Uks/sn+FQrPeyFUlcAeKb+nkiIr9TId3WnT2CgFr2p+J/XjsG7dBIeRDGwgM4XebHAEOJpGLjHJaMgRpoQKrm+FdMBkYSCjiynQ7AXX14mzbOSfV4q35Xz1es0jiw6RieogGx0garoFtVQA1E0Rs/oFb0ZT8aL8W58zFszRjpziP7A+PwBt2+Unw==</latexit>

p(T = t|x; ✓) = f(t)

<latexit sha1_base64="oXmX8Wdb5kiIUtG0weaYbSJUqV0=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4NBSC5hV4IKogS9eIyYFyRLmJ3MJkNmH8z0iiHJwV/x4kERr/6GN//GSbIHTSxoKKq66e5yI8EVWNa3kVpaXlldS69nNja3tnfM3b2aCmNJWZWGIpQNlygmeMCqwEGwRiQZ8V3B6m7/ZuLXH5hUPAwqMIiY45NuwD1OCWipbR5EucoVjB4vWtBjQPL4Et/nIN82s1bBmgIvEjshWZSg3Da/Wp2Qxj4LgAqiVNO2InCGRAKngo0zrVixiNA+6bKmpgHxmXKG0/vH+FgrHeyFUlcAeKr+nhgSX6mB7+pOn0BPzXsT8T+vGYN37gx5EMXAAjpb5MUCQ4gnYeAOl4yCGGhCqOT6Vkx7RBIKOrKMDsGef3mR1E4K9mmheFfMlq6TONLoEB2hHLLRGSqhW1RGVUTRCD2jV/RmPBkvxrvxMWtNGcnMPvoD4/MHnACUjQ==</latexit>

p(T > t|x; ✓) = S(t)

<latexit sha1_base64="lZxgrcyCx6vgs/EwsMnSaHsbMhE="></latexit>

NX

i=1

bi log p(T = ti|xi; ✓) + (1� bi) log p(T > ti|xi; ✓)

<latexit sha1_base64="2gUKM8xh6wWEJDe6v1gIyww8gmo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+x7/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwiGjaU=</latexit>

t1
<latexit sha1_base64="VfQlbjz14oEvJ+wNqJlCEmczKxA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3WO/1i9X3Ko7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEKCo2m</latexit>

t2
<latexit sha1_base64="gH6o9CeD6KKpOTNn4AxUghU0fxA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSPfbP++WKW3XnIH+Jl5MK5Gj0y5+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiUnVhmQMNa2FJK5+nMio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnWfnzXlftBacfOYQfsH5+AYLjo2n</latexit>

t3



What distribution should I use for T? 
Maximum	likelihood	estimation

• Commonly	parametric	densities	for	f(t):2.1 Hazard and Survival Function 11

Table 2.1 Useful parametric distributions for survival analysis
Distribution Hazard rate λ(t) Survival function

S(t)
Density function f (t)

Exponential (λ > 0) λ exp(−λt) λ exp(−λt)

Weibull (λ,φ > 0) λφtφ−1 exp(−λtφ) λφtφ−1 exp(−λtφ)

Log-normal
(σ > 0,µ ∈ R)

f (t)/S(t) 1 − !{(lnt − µ)/σ} ϕ{(lnt − µ)/σ}(σt)−1

Log-logistic
(λ > 0,φ > 0)

(λφtφ−1)/(1+ λtφ) 1/(1+ λtφ) (λφtφ−1)/(1+ λtφ)2

Gamma (λ,φ > 0) f (t)/S(t) 1 − I (λt,φ) {λφ/"(φ)}tφ−1 exp(−λt)

Gompertz
(λ,φ > 0)

λeφt exp{ λ
φ (1 − eφt )} λeφt exp{ λ

φ (1 − eφt )}

!(·) [ϕ(·)], c.d.f [p.d.f.] of N(0,1); I (x,φ) = 1
"(φ)

∫ x
0 uφ−1e−udu, incomplete gamma function

we have
f (t) = λφtφ−1 exp(−λtφ) t ≥ 0.

Note that
log{− log S(t)} = logλ + φ log t,

which is used for checking the Weibull model.
Table2.1 summarizes useful parametric distributions including exponential,

Weibull, log-normal, log-logistic, gamma, and Gompertz. These parametric distribu-
tions have been implemented in the survreg() function in the R package survival
as we see in Sect. 2.4.

Percentile of Distribution

Inmany applications, the percentile of a failure time distribution is of interest, e.g., the
median survival time. The 100pth percentile (or the pth quantile) of the distribution
of T is the value tp satisfying

P(T ≤ tp) = p ∈ (0, 1),

which is equivalent to S(tp) = 1 − p. That is, tp = F−1(p) indicates the time point
to which the 100p% of population will fail; in particular, the median survival time
t0.5 is the median of distribution of T . For example, tp = − log(1 − p)/λ for an
exponential distribution and tp = {− log(1 − p)/λ}1/φ for a Weibull distribution.

2.1.2 Nonparametric Estimation of Basic Quantities

In survival analysis, parametricmethods based on distributions in Table2.1 have been
well developed and would provide efficient results when the parametric assumptions

[Ha,	Jeong,	Lee.	Statistical	Modeling	of	Survival	Data	with	Random	Effects.	Springer	2017]

(parameters	
can	be	a	
function	of	x)



CoxPH: Interpretability in survival analysis

• Parametric models that depend on x change parameters of a 
distribution in linear/non-linear ways as a function of x
• Goal:
• Link variation to covariates directly to the survival function

• The Cox Proportional Hazard’s model is one of the most popular tools 
in survival analysis

<latexit sha1_base64="TCMCJXCV/+ngyjp/w8Ojlt21TaU="></latexit>

h(t|X = x; ✓) = h0(t)| {z }
Baseline hazard

exp(�Tx)

Baseline hazard reflects the hazard for subjects with all covariates equal to 0

https://www.jstor.org/stable/2985181


Interpretation in the univariate case
<latexit sha1_base64="xNoF+yfE9/cnYMSyI6NuMAlskl4=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAYhQQgzEtSLEPTiMYLRQGYIPZ0a09iz0F0jhnGewYuv4sWDIl49efNt7CyC2w8NH39VUV2/n0ih0bY/rKnpmdm5+cJCcXFpeWW1tLZ+ruNUcWjxWMaq7TMNUkTQQoES2okCFvoSLvyr42H94hqUFnF0hoMEvJBdRiIQnKGxuqWqGyjGs34Fb9uHNztONf/iak4PqQs3ScX1AVm1WyrbNXsk+hecCZTJRM1u6d3txTwNIUIumdYdx07Qy5hCwSXkRTfVkDB+xS6hYzBiIWgvG52U023j9GgQK/MipCP3+0TGQq0HoW86Q4Z9/bs2NP+rdVIMDrxMREmKEPHxoiCVFGM6zIf2hAKOcmCAcSXMXynvM5MRmhSLJgTn98l/4Xy35uzV6qf1cuNoEkeBbJItUiEO2ScNckKapEU4uSMP5Ik8W/fWo/VivY5bp6zJzAb5IevtEwNCnG0=</latexit>

h(t|X = x+ 1)

h(t|X = x)
= exp(�)

<latexit sha1_base64="tczktlZCXY0KGtlZ/mXZz4099tA="></latexit>

h(t|X = x1; ✓)

h(t|X = x2; ✓)
=

exp(�Tx1)

exp(�Tx2)

Hazard ratio is independent of time Parameters have an intuitive meaning

CoxPH: Linear model for log of the hazard ratio



CoxPH for binary data

• X = [received drug (0 no, 1 yes) , gender (0 male, 1 female)]
<latexit sha1_base64="0gOW4aeqaPBfdJ+s2wWQqmYIsWs=">AAACHXicbVDLSgNBEJyNrxhfqx69DAYhQQm7S1AvgujFYwSjQhKW2UnHDM4+mOmVxNUf8eKvePGgiAcv4t84eRzUWNBQXdXNTFeQSKHRcb6s3NT0zOxcfr6wsLi0vGKvrp3rOFUc6jyWsboMmAYpIqijQAmXiQIWBhIuguvjgX9xA0qLODrDfgKtkF1FoiM4QyP5drVbwrue7+70fK9MD2jXd0pYbkIvKTUDQOa79NbUNh11num8sm8XnYozBJ0k7pgUyRg13/5otmOehhAhl0zrhusk2MqYQsEl3BeaqYaE8Wt2BQ1DIxaCbmXD6+7pllHatBMrUxHSofpzI2Oh1v0wMJMhw67+6w3E/7xGip39ViaiJEWI+OihTiopxnQQFW0LBRxl3xDGlTB/pbzLFONoAi2YENy/J0+Sc6/i7laqp9Xi4dE4jjzZIJukRFyyRw7JCamROuHkgTyRF/JqPVrP1pv1PhrNWeOddfIL1uc3z7+epg==</latexit>

h(t|x1, x2) = h0(t) exp(�1z1 + �2z2)

<latexit sha1_base64="srbku3O+41ys7AGtHymNBGL5BU4=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCuymJFHUjFN24rGAf0IYwmU6aoZMHMzdCjf0SNy4UceunuPNvnLZZaOuBC4dz7uXee7xEcAWW9W0U1tY3NreK26Wd3b39snlw2FFxKilr01jEsucRxQSPWBs4CNZLJCOhJ1jXG9/M/O4Dk4rH0T1MEuaEZBRxn1MCWnLNclCFp14NX+HAtapQc82KVbfmwKvEzkkF5Wi55tdgGNM0ZBFQQZTq21YCTkYkcCrYtDRIFUsIHZMR62sakZApJ5sfPsWnWhliP5a6IsBz9fdERkKlJqGnO0MCgVr2ZuJ/Xj8F/9LJeJSkwCK6WOSnAkOMZyngIZeMgphoQqjk+lZMAyIJBZ1VSYdgL7+8Sjpndfu83rhrVJrXeRxFdIxOUBXZ6AI10S1qoTaiKEXP6BW9GY/Gi/FufCxaC0Y+c4T+wPj8ATg5kYQ=</latexit>

h(t|X) = h0(t)
<latexit sha1_base64="dCItRdyyuidHO4gGl5IB0rcrrSA=">AAACBXicbVDJSgNBEO2JW4zbqEc9NAYhuYQZCepFCHrxGMEskIShp1NJmvQsdNeIIebixV/x4kERr/6DN//GznLQxAcFj/eqqKrnx1JodJxvK7W0vLK6ll7PbGxube/Yu3tVHSWKQ4VHMlJ1n2mQIoQKCpRQjxWwwJdQ8/tXY792B0qLKLzFQQytgHVD0RGcoZE8+7CXw4d6nl7QnufkMN+E+zjX9AGZ5+Y9O+sUnAnoInFnJEtmKHv2V7Md8SSAELlkWjdcJ8bWkCkUXMIo00w0xIz3WRcahoYsAN0aTr4Y0WOjtGknUqZCpBP198SQBVoPAt90Bgx7et4bi/95jQQ7562hCOMEIeTTRZ1EUozoOBLaFgo4yoEhjCthbqW8xxTjaILLmBDc+ZcXSfWk4J4WijfFbOlyFkeaHJAjkiMuOSMlck3KpEI4eSTP5JW8WU/Wi/VufUxbU9ZsZp/8gfX5A0Ublog=</latexit>

h(t|X) = h0(t) exp(�1)
<latexit sha1_base64="j7eoBsFfVYaVXlvHi5Zz1727cDs=">AAACBXicbVDJSgNBEO1xjXEb9aiHxiAklzATgnoRgl48RjALJGHo6VSSJj0L3TViiLl48Ve8eFDEq//gzb+xsxw08UHB470qqur5sRQaHefbWlpeWV1bT22kN7e2d3btvf2qjhLFocIjGam6zzRIEUIFBUqoxwpY4Euo+f2rsV+7A6VFFN7iIIZWwLqh6AjO0EiefdTL4kM9Ry9oz3OymGvCfZxt+oDMK+Q8O+PknQnoInFnJENmKHv2V7Md8SSAELlkWjdcJ8bWkCkUXMIo3Uw0xIz3WRcahoYsAN0aTr4Y0ROjtGknUqZCpBP198SQBVoPAt90Bgx7et4bi/95jQQ7562hCOMEIeTTRZ1EUozoOBLaFgo4yoEhjCthbqW8xxTjaIJLmxDc+ZcXSbWQd0/zxZtipnQ5iyNFDskxyRKXnJESuSZlUiGcPJJn8krerCfrxXq3PqatS9Zs5oD8gfX5A0aglok=</latexit>

h(t|X) = h0(t) exp(�2)
<latexit sha1_base64="+gTCGe6rtmWTX3bQYOrsQ3af0W8=">AAACDXicbVDJSgNBEO2JW4xb1KOXxigkCGEmBPUiBL14jGAWSMLQ06kkTXoWumvEEPMDXvwVLx4U8erdm39jZzlo4oOiHu9V0V3Pi6TQaNvfVmJpeWV1Lbme2tjc2t5J7+5VdRgrDhUeylDVPaZBigAqKFBCPVLAfE9Czetfjf3aHSgtwuAWBxG0fNYNREdwhkZy00e9LD7Uc/SC9lw7i7km3EfZpgfIXOdk2gs5N52x8/YEdJE4M5IhM5Td9FezHfLYhwC5ZFo3HDvC1pApFFzCKNWMNUSM91kXGoYGzAfdGk6uGdFjo7RpJ1SmAqQT9ffGkPlaD3zPTPoMe3reG4v/eY0YO+etoQiiGCHg04c6saQY0nE0tC0UcJQDQxhXwvyV8h5TjKMJMGVCcOZPXiTVQt45zRdvipnS5SyOJDkghyRLHHJGSuSalEmFcPJInskrebOerBfr3fqYjias2c4++QPr8wfY0pmM</latexit>

h(t|X) = h0(t) exp(�1 + �2)

No treatment

Yes treatment

Yes treatment

No treatment

Male

Female

Male

Female



Key advantage of the CoxPH model

• We can estimate the model parameters
• Notably we can do so without estimating the baseline hazard 
• This is a semi-parametric model

• We make no assumptions about the baseline hazard rate 
• However, we learn parameters that dictate how it is modified based on patient 

covariates
• How do we learn this model?

• Won’t derive from scratch in this class but we’ll discuss the algorithm
• a useful exercise if this is your area of research
• come to my office hours if you’re interested in pursuing a project around this!

• Useful reference: Course notes by Ronghui (Lily) Xu

<latexit sha1_base64="UIyWLvTcQwdqoWRJIFfC4DrvEUg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJ74Ucab9ac+vuHGSVeAWpQYFmv/rVGyQsi7lCJqkxXc9NMcipRsEkn1Z6meEpZWM65F1LFY25CfL5sVNyZpUBiRJtSyGZq78nchobM4lD2xlTHJllbyb+53UzjG6CXKg0Q67YYlGUSYIJmX1OBkJzhnJiCWVa2FsJG1FNGdp8KjYEb/nlVdK6qHtX9cuHy1rjtoijDCdwCufgwTU04B6a4AMDAc/wCm+Ocl6cd+dj0Vpyiplj+APn8wfGxI6t</latexit>

�

https://www.math.ucsd.edu/~rxu/math284/slect5.pdf


Cox Partial Likelihood

<latexit sha1_base64="b54T02lL7EjUqtgyyDLUYzTjL5w="></latexit>

L(�) =
KX

i=1

bi log
exp(�TXi)P

l2R(ti)
exp(�TXl)

1. Loss function used for learning the Cox Proportional Hazards model
2. Scan from left to right in time, at each discrete point, calculate the risk set and the loss
3. Sum up the losses and use gradient based methods for parameter estimation

<latexit sha1_base64="dlP33NgCubsP80GWxnK8uuCU0pE=">AAACBnicbVDJSgNBEO2JW4xb1KMIjUGIlzAjQUVQgl48RjELZIahp9NJOulZ6K4RwjAnL/6KFw+KePUbvPk3dpaDJj4oeLxXRVU9LxJcgWl+G5mFxaXllexqbm19Y3Mrv71TV2EsKavRUISy6RHFBA9YDTgI1owkI74nWMMbXI/8xgOTiofBPQwj5vikG/AOpwS05Ob3bZ9AjxKR3KVFOMIX2E765xjc/iXYqZsvmCVzDDxPrCkpoCmqbv7Lboc09lkAVBClWpYZgZMQCZwKlubsWLGI0AHpspamAfGZcpLxGyk+1Eobd0KpKwA8Vn9PJMRXauh7unN0tJr1RuJ/XiuGzpmT8CCKgQV0sqgTCwwhHmWC21wyCmKoCaGS61sx7RFJKOjkcjoEa/bleVI/LlknpfJtuVC5msaRRXvoABWRhU5RBd2gKqohih7RM3pFb8aT8WK8Gx+T1owxndlFf2B8/gCq75f7</latexit>

R(t) = {j : tj > t}



Visualizing the computation of the partial 
likelihood

Time

Event

Censored event

Put all patients on a timeline

<latexit sha1_base64="b54T02lL7EjUqtgyyDLUYzTjL5w="></latexit>

L(�) =
KX

i=1

bi log
exp(�TXi)P

l2R(ti)
exp(�TXl)

<latexit sha1_base64="dlP33NgCubsP80GWxnK8uuCU0pE=">AAACBnicbVDJSgNBEO2JW4xb1KMIjUGIlzAjQUVQgl48RjELZIahp9NJOulZ6K4RwjAnL/6KFw+KePUbvPk3dpaDJj4oeLxXRVU9LxJcgWl+G5mFxaXllexqbm19Y3Mrv71TV2EsKavRUISy6RHFBA9YDTgI1owkI74nWMMbXI/8xgOTiofBPQwj5vikG/AOpwS05Ob3bZ9AjxKR3KVFOMIX2E765xjc/iXYqZsvmCVzDDxPrCkpoCmqbv7Lboc09lkAVBClWpYZgZMQCZwKlubsWLGI0AHpspamAfGZcpLxGyk+1Eobd0KpKwA8Vn9PJMRXauh7unN0tJr1RuJ/XiuGzpmT8CCKgQV0sqgTCwwhHmWC21wyCmKoCaGS61sx7RFJKOjkcjoEa/bleVI/LlknpfJtuVC5msaRRXvoABWRhU5RBd2gKqohih7RM3pFb8aT8WK8Gx+T1owxndlFf2B8/gCq75f7</latexit>

R(t) = {j : tj > t}

Intuition: How likely are the features of this patient to explain their elevated risk of having the event occur now
compared to all the individuals whose event occurs later!



Advances in machine learning for survival 
analysis

• DeepSurv, Katzman et. al, 2017
• One of the readings for this week uses a deep neural network to parameterize 

the modification to the hazard function
• Parameter estimation by taking derivatives of the 

• Advanced reading Deep survival analysis, Ranganath et. al, 2016
• What if x is very high dimensional? 
• Rather than condition on x directly, learn a latent representation of x while 

jointly modeling survival time

https://arxiv.org/pdf/1606.00931.pdf
https://proceedings.mlr.press/v56/Ranganath16.html


Evaluation in survival analysis

• Concordance index (aka C-statistic) – predicts how well the model 
ranks patients based on survival (i.e. predicts relative survival time)
• Equivalent to AUC (when there is no censoring)

Evaluation	for	survival	modeling
• Concordance-index	(also	called	C-statistic):	look	at	

model’s	ability	to	predict	relative survival	times:

• Illustration	– blue	lines	denote	pairwise	comparisons:

• Equivalent	to	AUC	for	binary	variables	and	no	censoring

[Wang,	Li,	Reddy.	Machine	Learning	for	Survival	Analysis:	A	Survey.	2017]
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tion performance in survival analysis needs to be measured using more specialized
evaluation metrics.

5.1. C-index
In survival analysis, a common way to evaluate a model is to consider the relative risk
of an event for different instance instead of the absolute survival times for each in-
stance. This can be done by computing the concordance probability or the concordance
index (C-index) [Harrell et al. 1984; Harrell et al. 1982; Pencina and D’Agostino 2004].
The survival times of two instances can be ordered for two scenarios: (1) both of them
are uncensored; (2) the observed event time of the uncensored instance is smaller than
the censoring time of the censored instance [Steck et al. 2008]. This can be visualized
by the ordered graph given in Figure 4. Figure 4(a) and Figure 4(b) are used to illus-

Fig. 4: Illustration of the ranking constraints in survival data for C-index calculations
(y1 < y2 < y3 < y4 < y5). Here, black circles indicate the observed events and red
circles indicate the censored observations. (a) No censored data and (b) with censored
data.

trate the possible ranking comparisons (denoted by edges between instances) for the
survival data without and with censored instances, respectively. There are

�5
2

�
= 10

possible pairwise comparisons for the five instances in the survival data without cen-
sored cases shown in Figure 4(a). Due to the presence of censored instances (repre-
sented by red circles) in Figure 4(b), only 6 out of the 10 comparisons are feasible.
It should be noted that, for a censored instance, only an earlier uncensored instance
(for example y2&y1) can be compared with. However, any censored instance cannot be
compared with both censored and uncensored instances after its censored time (for
example, y2&y3 and y2&y4) since its actual event time is unknown.

Consider both the observations and prediction values of two instances, (y1, ŷ1) and
(y2, ŷ2), where yi and ŷi represent the actual observation time and the predicted value,
respectively. The concordance probability between them can be computed as

c = Pr(ŷ1 > ŷ2|y1 � y2) (20)
By this definition, for the binary prediction problem, C-index will have a similar mean-
ing to the regular area under the ROC curve (AUC), and if yi is binary, then the C-index
is the AUC [Li et al. 2016d]. As the definition above is not straightforward, in practice,
there are multiple ways of calculating the C-index.
(1) When the output of the model is a hazard ratio (such as the outcome obtained by

Cox based models), C-index can be computed using

ĉ =
1

num

X

i:�i=1

X

j:yi<yj

I[Xi�̂ > Xj �̂] (21)

where i, j 2 {1, · · · , N}, num denotes the number of all comparable pairs, I[·] is the
indicator function and �̂ is the estimated parameters from the Cox based models.
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(2) For the survival methods which aim at directly learning the survival time, the
C-index should be calculated as:

ĉ =
1

num

X

i:�i=1

X

j:yi<yj

I[S(ŷj |Xj) > S(ŷi|Xi)] (22)

where S(·) is the estimated survival probabilities.

In order to evaluate the performance during a follow-up period, Heagerty and Zheng
defined the C-index for a fixed follow-up time period (0, t⇤) as the weighted average of
AUC values at all possible observation time points [Heagerty and Zheng 2005]. The
time-dependent AUC for any specific survival time t can be calculated as

AUC(t) = P (ŷi < ŷj |yi < t, yj > t) =
1

num(t)

X

i:yi<t

X

j:yj>t

I(ŷi < ŷj) (23)

where t 2 Ts which is the set of all possible survival times and num(t) represents the
number of comparable pairs for the time point t. Then the C-index during the time
period (0, t⇤), which is the weighted average of the time-dependent AUC obtained by
Eq. (23), is computed as

ct⇤ =
1

num

X

i:�i=1

X

j:yi<yj

I(ŷi < ŷj) =
X

t2Ts

AUC(t) · num(t)

num
(24)

Thus ct⇤ is the probability that the predictions are concordant with their outcomes for
a given data during the time period (0, t⇤).

5.2. Brier Score
Named after the inventor Glenn W. Brier, the Brier score (BS) [Brier 1950] is developed
to predict the inaccuracy of probabilistic weather forecasts. It can only evaluate the
prediction models which have probabilistic outcomes; that is, the outcome must remain
within the range [0,1], and the sum of all the possible outcomes for a certain individual
should be 1. When we consider the binary outcome prediction with a sample of N

instances and for each Xi (i = 1, 2, ..., N), the predicted outcome at t is ŷi(t), and the
actual outcome is yi(t); then, the empirical definition of the Brier score at the specific
time t can be given by

BS(t) =
1

N

NX

i=1

[ŷi(t)� yi(t)]
2 (25)

where the actual outcome yi(t) for each instance can only be 1 or 0.
Brier score was extended in [Graf et al. 1999] to be a performance measure for sur-

vival problems with censored information to evaluate the prediction models where the
outcome to be predicted is either binary or categorical in nature. When incorporating
the censoring information in the dataset, the individual contributions to the empiri-
cal Brier score are reweighted according to the censored information. Then, the Brier
score can be updated as follows:

BS(t) =
1

N

NX

i=1

wi(t)[ŷi(t)� yi(t)]
2 (26)

In Eq.(26), wi(t), given in Eq. (27), denotes the weight for the i
th instance and it is

estimated by incorporating the Kaplan-Meier estimator of the censoring distribution
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In survival analysis, a common way to evaluate a model is to consider the relative risk
of an event for different instance instead of the absolute survival times for each in-
stance. This can be done by computing the concordance probability or the concordance
index (C-index) [Harrell et al. 1984; Harrell et al. 1982; Pencina and D’Agostino 2004].
The survival times of two instances can be ordered for two scenarios: (1) both of them
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survival data without and with censored instances, respectively. There are
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possible pairwise comparisons for the five instances in the survival data without cen-
sored cases shown in Figure 4(a). Due to the presence of censored instances (repre-
sented by red circles) in Figure 4(b), only 6 out of the 10 comparisons are feasible.
It should be noted that, for a censored instance, only an earlier uncensored instance
(for example y2&y1) can be compared with. However, any censored instance cannot be
compared with both censored and uncensored instances after its censored time (for
example, y2&y3 and y2&y4) since its actual event time is unknown.

Consider both the observations and prediction values of two instances, (y1, ŷ1) and
(y2, ŷ2), where yi and ŷi represent the actual observation time and the predicted value,
respectively. The concordance probability between them can be computed as

c = Pr(ŷ1 > ŷ2|y1 � y2) (20)
By this definition, for the binary prediction problem, C-index will have a similar mean-
ing to the regular area under the ROC curve (AUC), and if yi is binary, then the C-index
is the AUC [Li et al. 2016d]. As the definition above is not straightforward, in practice,
there are multiple ways of calculating the C-index.
(1) When the output of the model is a hazard ratio (such as the outcome obtained by

Cox based models), C-index can be computed using

ĉ =
1

num

X

i:�i=1

X

j:yi<yj

I[Xi�̂ > Xj �̂] (21)

where i, j 2 {1, · · · , N}, num denotes the number of all comparable pairs, I[·] is the
indicator function and �̂ is the estimated parameters from the Cox based models.
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(2) For the survival methods which aim at directly learning the survival time, the
C-index should be calculated as:

ĉ =
1

num

X

i:�i=1

X

j:yi<yj

I[S(ŷj |Xj) > S(ŷi|Xi)] (22)

where S(·) is the estimated survival probabilities.

In order to evaluate the performance during a follow-up period, Heagerty and Zheng
defined the C-index for a fixed follow-up time period (0, t⇤) as the weighted average of
AUC values at all possible observation time points [Heagerty and Zheng 2005]. The
time-dependent AUC for any specific survival time t can be calculated as

AUC(t) = P (ŷi < ŷj |yi < t, yj > t) =
1

num(t)

X

i:yi<t

X

j:yj>t

I(ŷi < ŷj) (23)

where t 2 Ts which is the set of all possible survival times and num(t) represents the
number of comparable pairs for the time point t. Then the C-index during the time
period (0, t⇤), which is the weighted average of the time-dependent AUC obtained by
Eq. (23), is computed as

ct⇤ =
1

num

X

i:�i=1

X

j:yi<yj

I(ŷi < ŷj) =
X

t2Ts

AUC(t) · num(t)

num
(24)

Thus ct⇤ is the probability that the predictions are concordant with their outcomes for
a given data during the time period (0, t⇤).

5.2. Brier Score
Named after the inventor Glenn W. Brier, the Brier score (BS) [Brier 1950] is developed
to predict the inaccuracy of probabilistic weather forecasts. It can only evaluate the
prediction models which have probabilistic outcomes; that is, the outcome must remain
within the range [0,1], and the sum of all the possible outcomes for a certain individual
should be 1. When we consider the binary outcome prediction with a sample of N

instances and for each Xi (i = 1, 2, ..., N), the predicted outcome at t is ŷi(t), and the
actual outcome is yi(t); then, the empirical definition of the Brier score at the specific
time t can be given by

BS(t) =
1

N

NX

i=1

[ŷi(t)� yi(t)]
2 (25)

where the actual outcome yi(t) for each instance can only be 1 or 0.
Brier score was extended in [Graf et al. 1999] to be a performance measure for sur-

vival problems with censored information to evaluate the prediction models where the
outcome to be predicted is either binary or categorical in nature. When incorporating
the censoring information in the dataset, the individual contributions to the empiri-
cal Brier score are reweighted according to the censored information. Then, the Brier
score can be updated as follows:

BS(t) =
1

N

NX

i=1

wi(t)[ŷi(t)� yi(t)]
2 (26)

In Eq.(26), wi(t), given in Eq. (27), denotes the weight for the i
th instance and it is

estimated by incorporating the Kaplan-Meier estimator of the censoring distribution
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Other ways to evaluate models

• Mean squared error [for just those who are uncensored]
• Held out likelihood (censored + uncensored) 



Questions?

Why not use classification? 
This can be a reasonable option when data is 

scarce, 

Thresholds for classification may not be known 
at training time,

Why not use regression? 
When outcomes are missing [event time not 
observed] you may have to throw data out 

• Leads to limited training data
• Might introduce bias into the dataset


