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Anncouncements & Outline

• Friday– Nikhil Verma [Model introspection] 
• Project report will have a contributions sections: 
• Please list the contributions made by each individual to the report
• Will not count towards the page limit

• Case studies in machine learning for healthcare
• C1: Machine learning to reduce antibiotic resistance
• C2: Adversarial attacks on time-series data in healthcare



Case study 1

• [A decision algorithm to promote outpatient antimicrobial 
stewardship for uncomplicated urinary tract infection, Kanjilal et. al, 
2020]

Overuse leads to 
resistance

https://pubmed.ncbi.nlm.nih.gov/33148625/


The problem

• The use and over-use of anti-biotics has led to resistance
• Resistance is a cause of treatment failure which triggers further use of 

broad-spectrum agents which again encourages resistance

• Disease: Uncomplicated Urinary Tract Infection in women 
• 13 million outpatient & emergency room visits
• 4.7 million prescriptions annually



The status quo – (1) the idealized pipeline

Infection

Infection

First line antibiotics

Second line antibiotics



The status quo

• Most common prescriptions are : Floroquinolone antibiotics (2nd line)
• Hypothesis is that this is leading to resistance

• What are the clinical regulations: 
• Infectious Disease Society of America (IDSA): 

• Avoid the use of fluoroquinolones
• Low adherence since end-decision made by clinician



How can we do better?

• Use ML with EHR data to predict likelihood of resistance to first and 
second line therapy
• Use probabilities to define a decision rule to create recommendations
• Compare recommendations to clinician performance



Cohort
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Being seen in an outpatient clinic and prior resistance to ciproflox-
acin were negatively associated with fluoroquinolone prescription 
(table S3).

Algorithm recommendations would be actionable in actual 
clinical practice
Because our model is not able to account for all factors used in treatment 
decisions, we anticipated that a percentage of recommendations 

would be ignored by clinicians because of contraindications. We 
sought to estimate the percentage and the reasons for contraindica-
tion through an additional manual review of 20 randomly selected 
charts. For the scenario where clinicians chose a second-line agent 
when the algorithm correctly recommended a first-line agent, 15 of 
20 (75%) of recommendations were actionable and 3 of 20 (15%) 
were contraindicated because of suspicion of pyelonephritis or the 
presence of multiple infectious syndromes. The actionability of the 

Table 1. Demographics, location of specimen collection, and microbiologic and treatment characteristics for patients with uncomplicated UTI. Patients 
in the training set presented to Massachusetts General Hospital and Brigham and Women’s Hospital between 2007 and 2013 and those in the test set presented 
between 2014 and 2016. P values are for differences between the training and test sets and were calculated using two-sample t tests for normally distributed 
variables and a nonparametric randomization test derived from random permutations of the dataset labels for nonnormally distributed variables. 

Entire cohort
(2007–2016)

Training set
(2007–2013)

Test set
(2014–2016) P

n (patients) 13,682 10,053 3,629
n (specimens) 15,806 11,865 3,941
Demographics
 Age, mean (SD) 34.0 (10.9) 34.1 (10.8) 33.6 (11.1) 0.007
 Race, n (%)
  White 8,784 (64.2) 6,497 (64.6) 2,287 (63.0)

0.083
  Non-white 4,898 (35.8) 3,556 (35.4) 1,342 (37.0)
Location, n (%)
 Outpatient 11,639 (85.1) 8,655 (86.1) 2,984 (82.2) <0.001
 Emergency room 1,607 (11.7) 1,074 (10.7) 533 (14.7) <0.001
 General inpatient 534 (3.9) 403 (4.0) 131 (3.6) 0.287
 Intensive care unit 17 (0.1) 13 (0.1) 4 (0.1) 0.580
Organism, n (%)
 Escherichia coli 11,901 (87.0) 8,809 (87.6) 3,092 (85.2) <0.001
 Coagulase-negative 
Staphylococcus spp. 670 (4.9) 448 (4.5) 222 (6.1) <0.001

 Klebsiella pneumoniae 667 (4.9) 503 (5.0) 164 (4.5) 0.246
 Enterococcus spp. 56 (0.4) 28 (0.3) 28 (0.8) <0.001
 Staphylococcus aureus 53 (0.4) 32 (0.3) 21 (0.6) 0.028
 Other spp. 838 (6.1) 628 (6.2) 210 (5.8) 0.322
Current resistance, n (%)
 Nitrofurantoin 1,654 (12.1) 1,236 (12.3) 418 (11.5) 0.219
 TMP-SMX 2,885 (21.1) 2,147 (21.4) 738 (20.3) 0.196
 Ciprofloxacin 792 (5.8) 554 (5.5) 238 (6.6) 0.020
 Levofloxacin 772 (5.6) 533 (5.3) 239 (6.6) 0.004
Prior resistance in the past 90 
days, n (%)
 Nitrofurantoin 98 (0.7) 83 (0.8) 15 (0.4) 0.012
 TMP-SMX 153 (1.1) 153 (1.1) 25 (0.7)) 0.004
 Ciprofloxacin 83 (0.6) 65 (0.6) 18 (0.5) 0.260
 Levofloxacin 85 (0.6) 67 (0.7) 18 (0.5) 0.218
Empiric therapy decision, n (%)
 Nitrofurantoin 3,044 (22.2) 1,745 (17.4) 1,299 (35.8) <0.001
 TMP-SMX 5,676 (41.5) 4,459 (44.4) 1,217 (33.5) <0.001
 Ciprofloxacin 5,478 (40.0) 4,247 (42.2) 1,231 (33.9) <0.001
 Levofloxacin 418 (3.1) 377 (3.8) 41 (1.1) <0.001
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What features might you deem relevant for 
this task?



Features

• Demographics
• Microbiology
• Population level prevalence of resistance



Modeling
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algorithm was able to discern nonsusceptibility to first-line agents 
better than clinicians. This difference was driven by the proportion 
of inappropriate antibiotic therapy with nitrofurantoin and TMP-
SMX by clinicians (11.1% and 19.1%, respectively) relative to the 
algorithm (9.6% and 14.3%, respectively; table S2). For cases where 
clinicians chose a second-line therapy but the algorithm chose a 
first-line agent, 92% (1066 of 1157) of decisions ended up being sus-
ceptible to the first-line agent. For cases where clinicians chose an 
inappropriate first-line therapy, the algorithm correctly chose the 
appropriate first-line agent 47% (183 of 392) of the time (Fig. 4). We 

performed a manual review of 18 randomly selected charts where 
the algorithm (but not the clinician) chose the proper first-line agent 
and found that 10 patients (56%) had no prior antibiotic resistance 
or exposure to first-line therapies, 1 patient (6%) had complicated 
UTI or pyelonephritis, and 2 patients (11%) had no clinical docu-
mentation. Using regularized logistic regression, we observed that 
the top 5 features predicting use of fluoroquinolones by clinicians 
were prior fluoroquinolone use, being of a white race, and being 
seen in the emergency room, suggesting that provider preferences 
rather than patient risk factors for resistance may be driving use. 
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Fig. 1. Schematic of analytic protocol. (A) We trained decision tree, logistic regression, and random forest models to predict nonsusceptibility to nitrofurantoin (NIT), 
TMP-SMX, ciprofloxacin (CIP), and levofloxacin (LVX). We selected the logistic regression models for use on our test cohort, which consisted of patients presenting be-
tween 2014 and 2016. (B) We set a false negativity rate and identified the corresponding probability threshold for a given antibiotic. Isolates with the predicted probabil-
ities of nonsusceptibility (NS) greater than this value were categorized as NS, whereas those with probabilities below this threshold were categorized as “susceptible” (S). 
This was repeated for all four antibiotics to yield a set of probability thresholds that could be used to bin predicted probabilities into phenotypes for each specimen. We 
then chose the antibiotic of the narrowest spectrum among those considered susceptible and calculated our two primary outcomes. This process was repeated for 1331 sets 
of thresholds. The optimal threshold set was selected to meet a prespecified target of minimizing inappropriate antibiotic therapy to the greatest extent possible while 
not exceeding a second-line antibiotic usage rate of 10%. (C) We evaluated our algorithm by retraining our chosen prediction models from part A on the entire training 
cohort and then performing prediction on the test cohort. Treatment decisions were made using the optimal threshold set from part B, and the resulting primary out-
comes were compared to the performance of clinicians and a best-case guideline-based policy.
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Pipeline
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algorithm was able to discern nonsusceptibility to first-line agents 
better than clinicians. This difference was driven by the proportion 
of inappropriate antibiotic therapy with nitrofurantoin and TMP-
SMX by clinicians (11.1% and 19.1%, respectively) relative to the 
algorithm (9.6% and 14.3%, respectively; table S2). For cases where 
clinicians chose a second-line therapy but the algorithm chose a 
first-line agent, 92% (1066 of 1157) of decisions ended up being sus-
ceptible to the first-line agent. For cases where clinicians chose an 
inappropriate first-line therapy, the algorithm correctly chose the 
appropriate first-line agent 47% (183 of 392) of the time (Fig. 4). We 

performed a manual review of 18 randomly selected charts where 
the algorithm (but not the clinician) chose the proper first-line agent 
and found that 10 patients (56%) had no prior antibiotic resistance 
or exposure to first-line therapies, 1 patient (6%) had complicated 
UTI or pyelonephritis, and 2 patients (11%) had no clinical docu-
mentation. Using regularized logistic regression, we observed that 
the top 5 features predicting use of fluoroquinolones by clinicians 
were prior fluoroquinolone use, being of a white race, and being 
seen in the emergency room, suggesting that provider preferences 
rather than patient risk factors for resistance may be driving use. 
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Fig. 1. Schematic of analytic protocol. (A) We trained decision tree, logistic regression, and random forest models to predict nonsusceptibility to nitrofurantoin (NIT), 
TMP-SMX, ciprofloxacin (CIP), and levofloxacin (LVX). We selected the logistic regression models for use on our test cohort, which consisted of patients presenting be-
tween 2014 and 2016. (B) We set a false negativity rate and identified the corresponding probability threshold for a given antibiotic. Isolates with the predicted probabil-
ities of nonsusceptibility (NS) greater than this value were categorized as NS, whereas those with probabilities below this threshold were categorized as “susceptible” (S). 
This was repeated for all four antibiotics to yield a set of probability thresholds that could be used to bin predicted probabilities into phenotypes for each specimen. We 
then chose the antibiotic of the narrowest spectrum among those considered susceptible and calculated our two primary outcomes. This process was repeated for 1331 sets 
of thresholds. The optimal threshold set was selected to meet a prespecified target of minimizing inappropriate antibiotic therapy to the greatest extent possible while 
not exceeding a second-line antibiotic usage rate of 10%. (C) We evaluated our algorithm by retraining our chosen prediction models from part A on the entire training 
cohort and then performing prediction on the test cohort. Treatment decisions were made using the optimal threshold set from part B, and the resulting primary out-
comes were compared to the performance of clinicians and a best-case guideline-based policy.
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CILP/LVX – proportion of second line therapy
IAT – Inappropriate antibiotic therapy

Found a threshold at which IAT is minimized while second line is 
set to ~10%  



Comparison to clinicians
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algorithm was able to discern nonsusceptibility to first-line agents 
better than clinicians. This difference was driven by the proportion 
of inappropriate antibiotic therapy with nitrofurantoin and TMP-
SMX by clinicians (11.1% and 19.1%, respectively) relative to the 
algorithm (9.6% and 14.3%, respectively; table S2). For cases where 
clinicians chose a second-line therapy but the algorithm chose a 
first-line agent, 92% (1066 of 1157) of decisions ended up being sus-
ceptible to the first-line agent. For cases where clinicians chose an 
inappropriate first-line therapy, the algorithm correctly chose the 
appropriate first-line agent 47% (183 of 392) of the time (Fig. 4). We 

performed a manual review of 18 randomly selected charts where 
the algorithm (but not the clinician) chose the proper first-line agent 
and found that 10 patients (56%) had no prior antibiotic resistance 
or exposure to first-line therapies, 1 patient (6%) had complicated 
UTI or pyelonephritis, and 2 patients (11%) had no clinical docu-
mentation. Using regularized logistic regression, we observed that 
the top 5 features predicting use of fluoroquinolones by clinicians 
were prior fluoroquinolone use, being of a white race, and being 
seen in the emergency room, suggesting that provider preferences 
rather than patient risk factors for resistance may be driving use. 
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Fig. 1. Schematic of analytic protocol. (A) We trained decision tree, logistic regression, and random forest models to predict nonsusceptibility to nitrofurantoin (NIT), 
TMP-SMX, ciprofloxacin (CIP), and levofloxacin (LVX). We selected the logistic regression models for use on our test cohort, which consisted of patients presenting be-
tween 2014 and 2016. (B) We set a false negativity rate and identified the corresponding probability threshold for a given antibiotic. Isolates with the predicted probabil-
ities of nonsusceptibility (NS) greater than this value were categorized as NS, whereas those with probabilities below this threshold were categorized as “susceptible” (S). 
This was repeated for all four antibiotics to yield a set of probability thresholds that could be used to bin predicted probabilities into phenotypes for each specimen. We 
then chose the antibiotic of the narrowest spectrum among those considered susceptible and calculated our two primary outcomes. This process was repeated for 1331 sets 
of thresholds. The optimal threshold set was selected to meet a prespecified target of minimizing inappropriate antibiotic therapy to the greatest extent possible while 
not exceeding a second-line antibiotic usage rate of 10%. (C) We evaluated our algorithm by retraining our chosen prediction models from part A on the entire training 
cohort and then performing prediction on the test cohort. Treatment decisions were made using the optimal threshold set from part B, and the resulting primary out-
comes were compared to the performance of clinicians and a best-case guideline-based policy.
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Evaluating what the algorithm would have 
done in different scenarios 
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regression and excluded decision trees and random forests based on 
their poor validation set performance, as well as their relative lack of 
interpretability.

Using the 20 70% splits of the training data noted above, we set 
an FNR value and identified the probability of nonsusceptibility 
that would result in that value. We then used this probability as a 
threshold and applied it to the corresponding validation dataset to 
bin probabilities into susceptible or nonsusceptible phenotypes. A 
“threshold set” was generated by repeating this process for each an-
tibiotic. For each specimen, we next selected the antibiotic of nar-
rowest spectrum (nitrofurantoin < TMP-SMX < ciprofloxacin < 
levofloxacin) among those that were considered susceptible as the 
final treatment recommendation. If no antibiotic was considered 
susceptible, the decision algorithm made no choice. Using this set 

of recommendations, we calculated our 
primary outcomes, the inappropriate 
antibiotic therapy and second-line an-
tibiotic usage rates, in that particular 
validation dataset. For any specimens 
where the algorithm was unable to make 
a treatment recommendation, we de-
faulted to the decision made by the cli-
nician at evaluation time.

Because of the extensive time it takes 
to evaluate the performance of each FNR 
combination and the high correlation 
between resistance to ciprofloxacin and 
levofloxacin, we constrained the search 
space to combinations in which both 
second-line antibiotics had the same 
FNR. In total, we calculated reductions 
in inappropriate antibiotic therapy and 
second-line usage over 11 FNR values 
(0.001, 0.015, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, and 0.9), one model class 
(logistic regression), and three antibi-
otics (nitrofurantoin, TMP-SMX, and 
the fluoroquinolones combined), yield-
ing 1331 different combinations. The 

optimal threshold set was defined to be the one that minimized the 
mean rate of inappropriate antibiotic therapy while not exceeding a 
mean second-line antibiotic usage rate of 10% on the validation set.

Retrospective evaluation
We estimated the performance of the decision algorithm on a held-
out test set of patients, presenting with uncomplicated UTI between 
2014 and 2016. We retrained our best-performing models with 
tuned hyperparameters on 100% of the training data, applied the 
optimal threshold set (identified through our sensitivity analysis on 
the training data) to recommend empiric antibiotic treatments, and 
then calculated primary outcomes over the entire test dataset. For 
specimens where the model was unable to make a recommendation, 
the evaluation defaulted to the choice of the clinician. As our primary 
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Second-line 
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(n = 1323)

Inappropriate 
(n = 78)

Inappropriate 
(n = 392)

Appropriate 
(n = 1245)

Appropriate 
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(n = 2618)
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Second-line
agent 

(n = 1323)

Inappropriate
(n = 78)

Inappropriate
(n = 392)
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(n = 1245)

Appropriate
(n = 2226)

Fig. 4. Post hoc analysis of clinician versus algorithm therapy decisions and appropriateness in patients with 
uncomplicated UTI presenting between 2014 and 2016. Appropriate therapy was defined as the choice of an 
empiric antibiotic that has in vitro activity against the pathogen, whereas inappropriate therapy was defined as the 
choice of an empiric antibiotic that has no in vitro activity against the pathogen.

Table 3. Comparison of primary outcomes for algorithm, clinicians, and best-case guideline-based policy in patients presenting with uncomplicated 
UTI between 2014 and 2016.  

% (95% CI)*
Algorithm Clinicians Best-case guidelines

Use of second-line therapy†

 Recommendation cohort‡ (n = 3911) 10.8 (9.8–11.8) 33.5 (32.1.-35.0) 9.5 (8.6–10.4)

 Full cohort§ (n = 3941) 11.0 (10.0–12.0) 33.6 (32.1–35.0) 9.7 (8.8–10.7)
Use of inappropriate antibiotic treatment
 Recommendation cohort‡ (n = 3911) 9.7 (8.8–10.6) 11.8 (10.8–12.8) 10.6 (9.6–11.5)

 Full cohort§ (n = 3941) 9.8 (8.9–10.8) 11.9 (10.9–12.9) 10.7 (9.7–11.7)
*The 95% CI was calculated using a normal approximation to binomial distribution.   †Second-line therapy refers to use of ciprofloxacin or 
levofloxacin.   ‡Recommendation cohort refers to the 99% of specimens for which the algorithm made a treatment recommendation.   §Full cohort refers 
to all specimens in the test cohort, including the 1% of patients where the algorithm was unable to make a recommendation. In these cases, the evaluation 
defaulted to the decision of the clinician.
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Conclusion

• Data available to experiment with: 
https://physionet.org/content/antimicrobial-resistance-uti/1.0.0/

https://physionet.org/content/antimicrobial-resistance-uti/1.0.0/


Case study 2

• [Deep learning models for electrocardiograms are susceptible to 
adversarial attack, Han et. al, 2020]

AliveCor nets $65M, new FDA 
clearances for future telehealth 
plans

Source: 
https://www.fiercebiotech.com/med
tech/alivecor-nets-65m-new-fda-
clearances-for-future-telehealth-
plans

https://www.nature.com/articles/s41591-020-0791-x
https://www.fiercebiotech.com/medtech/alivecor-nets-65m-new-fda-clearances-for-future-telehealth-plans


Adversarial examples in machine learning

Model dependent
inputs that can 

change the prediction
of any machine learning

classifier.



Why might adversarial examples be a 
problem in healthcare?



(Not necessarily good)use cases for 
automated ECG prediction

• Lower/higher insurance rates for individuals who undergo regular 
ECG assessments 
• Referrals to specialists based on automated neural network 

prediction



New adversarial attack for ECG data

• Electrocardiograms: 
• 12 lead ECGs used to assess heart function
• Apple Watches use a single lead ECG to detect arrythmias

• Contributions of this work: 
• Showcase how to create an adversarial attack for ECG data

• But first, some context on gradients, GradCAM and adversarial attacks



Interpreting linear models

Source: https://www.kdnuggets.com/2017/10/learn-generalized-linear-models-glm-r.html/2

Linear models are 
inherently interpretable.

What about non-linear models?



How might you interpret nonlinear models?



Gradients with respect to the input

We can use the same 
algorithm

we use for learning



Gradients wrt inputs - Class Activation Maps



Gradients wrt inputs - Adversarial attacks

LETTERS NATURE MEDICINELETTERS NATURE MEDICINE

Methods
Description of the traditional attack methods. Two traditional attack methods 
are the ‘fast gradient sign method’ (FGSM)23 and PGD12,13. !ese are white-box 
attack methods based on the gradients of the loss used to train the model with 
respect to the input. Both FGSM and PGD can be used for targeted and untargeted 
attacks. Targeted attacks force the network to output a speci"c incorrect label, 
while untargeted attacks force the network to make any wrong classi"cation. 
Untargeted attacks usually minimize the probability of the true class, while targeted 
attacks maximize the probability of the target class.

Denote our input entry x, true label y, classifier (network) f and loss function 
L(f(x),y). We describe FGSM and PGD in the following.
t� Untargeted attack

t� FGSM: FGSM is a fast algorithm. For an attack level ε, FGSM 
sets

xadv ¼ x þ ϵsign ∇xL f xð Þ; yð Þð Þ

 
!e attack level is chosen to be su#ciently small so as to be undetect-
able.
t� PGD: PGD is an improved version that uses multiple iterations 

of FGSM. De"ne Clipx,ε(x′) to project each x′ back to the in"nity 
norm ball by clamping the maximum absolute di$erence value 
between x and x′ to ε. Beginning by setting x00 ¼ x

I
, we have

x0i ¼ Clipx;ε x0i"1 þ αsign ∇xL f x0i"1; y
! "! "! "! "

ð1Þ

 
A%er T steps, we get our adversarial example xadv ¼ x0T

I
.

t� Targeted attack (target class t)

t� FGSM: For an attack level ε, FGSM sets
xadv ¼ x " ϵsign ∇xL f xð Þ; tð Þð Þ

t� PGD: Beginning by setting x00 ¼ x
I

, we have

x0i ¼ Clipx;ε x0i"1 " αsign ∇xL f x0i"1; t
! "! "! "! "

 
Unlike untargeted attacks, the gradient is subtracted. A%er T steps, 
we get our adversarial example xadv ¼ x0T

I
.

In this Letter, we use targeted attacks to change AF to Normal and untargeted 
attacks on classes besides AF.

Our smooth attack method. To smooth the signal, we use convolution. 
Convolution takes the weighted average of one position of the signal and its 
neighbors:

a⊛vð Þ n½ $ ¼
X2Kþ1

m¼1

a½n'mþ K þ 1$ ´ v½m$

where a is the objective function and v is the weight or kernel function. In our 
experiment, the weights are determined by a Gaussian kernel. Mathematically, if we 
have a Gaussian kernel of size 2K + 1 and standard deviation σ, we have

v m½ " ¼
exp $ m$K$1ð Þ2

2*σ2

! "

P2Kþ1
i¼1 exp $ i$K$1ð Þ2

2*σ2

! "

We can easily see that when σ goes to infinity, the convolution with the 
Gaussian kernel becomes a simple average; when σ goes to zero, the convolution 
becomes the identity function. Instead of taking an adversarial perturbation and 
then convolving it with the Gaussian kernels, we could create adversarial examples 
by optimizing a smooth perturbation that fools the neural network. We introduce 
our method of training ‘smooth adversarial perturbations’ (SAP). In our SAP 
method, we take the adversarial perturbation as the parameter θ and add it to the 
clean examples after convolving with a number of Gaussian kernels. We denote 
K(s,σ) to be a Gaussian kernel with size s and standard deviation σ. The resulting 
adversarial example can be written as a function of θ:

xadv θð Þ ¼ x þ 1
m

Xm

i

θ⊛Kðs i½ &; σ i½ &Þ

In our experiment, we let s be {5, 7, 11, 15, 19} and σ be {1.0, 3.0, 5.0, 7.0, 10.0}.

Then we try to maximize the loss function with respect to θ to get the 
adversarial example in an untargeted attack. We still use PGD, but this time on θ:

θ0i ¼ Clip0;ϵ θ0i"1 þ αsign ∇θL f xadv θ0i"1

! "
; y

! "! "! "! "
ð2Þ

There are two major differences between update equations (2) and (1). In 
equation (2), we update θ, not xadv, and clip around zero, not the input x. In practice, 
we initialize the adversarial perturbation θ to be the one obtained from PGD 
ϵ ¼ 10; α ¼ 1;T ¼ 20ð Þ
I

 on x and run another PGD ϵ ¼ 10; α ¼ 1;T ¼ 40ð Þ
I

 on θ.
For targeted attacks (target class t), the update is

θ0i ¼ Clip0;ϵ θ0i"1 " αsign ∇θL f xadv θ0i"1

! "
; t

! "! "! "! "

If we take the same combination of convolution on the adversarial examples 
generated in PGD to create smooth adversarial examples, 71% of the originally 
correctly classified test ECGs are assigned different labels, which is worse than our 
smooth attack method (74%). The idea of optimizing the parameters of a smooth 
model could be expanded to other models, such as differential equation models of 
ECGs24, to find adversarial examples that more closely match human physiology.

Existence of adversarial examples. Our experiments are designed to show that 
adversarial examples are not rare. We only discuss untargeted attacks, but it is easy 
to extend our analysis to targeted attacks. We denote the original signal x and the 
generated adversarial example xadv.

First, we generate Gaussian noise δ such that δ½i" # N 0; 25ð Þ
I

 and then add it 
to the adversarial examples. To make sure the new examples are still smooth, we 
smooth the perturbation by convolving with the same Gaussian kernels as in our 
smooth attack method. We then clip the perturbation to make sure that it is still in 
the infinity norm ball. The newly generated example is

x0adv ¼ x þ Clip0;ϵ
1
m

Xm

i¼1

ðxadv þ δ$ xÞ⊛Kðs i½ '; σ i½ 'Þ
 !

We repeat the process of generating new examples 1,000 times. These newly 
generated examples are still adversarial examples. Some of them may intersect. 
For each intersected pair, we concatenate the left part of one example and the right 
part of the other to create new adversarial examples. Denote x1 and x2 to be a pair 
of adversarial examples that intersect. Suppose they intersect at time step t and the 
total length of the example is T. The new hybrid example x′ satisfies

x0 1 : t½ " ¼ x1 1 : t½ "; x0 t þ 1 : T½ " ¼ x2 t þ 1 : T½ "
where [1:t] means from time step 1 to time step t. All the newly concatenated 
examples are still misclassified by the network.

The 1,000 adversarial examples form a band. To emphasize that all the smooth 
signals in the band are still adversarial examples, we sample uniformly from the 
band to create new examples. Denote max[t] and min[t] to be the maximum value 
and minimum value of 1,000 samples at time step t. To sample a smooth signal 
from the band, we first sample a uniform random variable a t½ " # Uðmin t½ ";max t½ "Þ

I
 

for each time step t and then we smooth the perturbation. The example generated 
by uniform sampling and smoothing is

x0adv ¼ x þ Clip0;ϵ
1
m

Xm

i¼1

ða$ xÞ⊛Kðs i½ '; σ i½ 'Þ
 !

We repeat this procedure 1,000 times. All of the newly generated examples still 
cause the network to make the wrong diagnosis. We visualize the three procedures 
to show the existence of adversarial examples in Extended Data Fig. 2.

Limitations of adversarial training. Adversarial training12 is a more effective 
method to build robust models than including adversarial examples in the 
training data. However, adversarial training does well only on small image datasets 
like MNIST25, not larger ones like CIFAR1026. For CIFAR10, even dynamically 
including adversarial examples while training the model will not lead to a robust 
model27. In addition, there is no formal guarantee that adversarial training 
implemented with PGD can converge to the saddle point of the infinity norm 
minimax formulation of adversarial training. For example, switching to a higher-
order optimizer may produce different adversarial examples not captured by PGD-
based adversarial training.

Statistics and reproducibility. Figure 1a,b was generated for 50 AF signals and 
124 normal sinus rhythms. Figure 3 was generated twice. Extended Data Fig. 1 was 
generated for 40 examples. We obtained similar results for the examples we generated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset can be accessed from https://physionet.org/challenge/2017/.

Code availability
The code is available from https://github.com/XintianHan/ADV_ECG.
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By repeatedly changing the datapoint x very 
slightly, we can change the model’s output 

from turtle to a rifle. 
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Methods
Description of the traditional attack methods. Two traditional attack methods 
are the ‘fast gradient sign method’ (FGSM)23 and PGD12,13. !ese are white-box 
attack methods based on the gradients of the loss used to train the model with 
respect to the input. Both FGSM and PGD can be used for targeted and untargeted 
attacks. Targeted attacks force the network to output a speci"c incorrect label, 
while untargeted attacks force the network to make any wrong classi"cation. 
Untargeted attacks usually minimize the probability of the true class, while targeted 
attacks maximize the probability of the target class.

Denote our input entry x, true label y, classifier (network) f and loss function 
L(f(x),y). We describe FGSM and PGD in the following.
t� Untargeted attack

t� FGSM: FGSM is a fast algorithm. For an attack level ε, FGSM 
sets

xadv ¼ x þ ϵsign ∇xL f xð Þ; yð Þð Þ

 
!e attack level is chosen to be su#ciently small so as to be undetect-
able.
t� PGD: PGD is an improved version that uses multiple iterations 

of FGSM. De"ne Clipx,ε(x′) to project each x′ back to the in"nity 
norm ball by clamping the maximum absolute di$erence value 
between x and x′ to ε. Beginning by setting x00 ¼ x

I
, we have

x0i ¼ Clipx;ε x0i"1 þ αsign ∇xL f x0i"1; y
! "! "! "! "

ð1Þ

 
A%er T steps, we get our adversarial example xadv ¼ x0T

I
.

t� Targeted attack (target class t)

t� FGSM: For an attack level ε, FGSM sets
xadv ¼ x " ϵsign ∇xL f xð Þ; tð Þð Þ

t� PGD: Beginning by setting x00 ¼ x
I

, we have

x0i ¼ Clipx;ε x0i"1 " αsign ∇xL f x0i"1; t
! "! "! "! "

 
Unlike untargeted attacks, the gradient is subtracted. A%er T steps, 
we get our adversarial example xadv ¼ x0T

I
.

In this Letter, we use targeted attacks to change AF to Normal and untargeted 
attacks on classes besides AF.

Our smooth attack method. To smooth the signal, we use convolution. 
Convolution takes the weighted average of one position of the signal and its 
neighbors:

a⊛vð Þ n½ $ ¼
X2Kþ1

m¼1

a½n'mþ K þ 1$ ´ v½m$

where a is the objective function and v is the weight or kernel function. In our 
experiment, the weights are determined by a Gaussian kernel. Mathematically, if we 
have a Gaussian kernel of size 2K + 1 and standard deviation σ, we have

v m½ " ¼
exp $ m$K$1ð Þ2

2*σ2

! "

P2Kþ1
i¼1 exp $ i$K$1ð Þ2

2*σ2

! "

We can easily see that when σ goes to infinity, the convolution with the 
Gaussian kernel becomes a simple average; when σ goes to zero, the convolution 
becomes the identity function. Instead of taking an adversarial perturbation and 
then convolving it with the Gaussian kernels, we could create adversarial examples 
by optimizing a smooth perturbation that fools the neural network. We introduce 
our method of training ‘smooth adversarial perturbations’ (SAP). In our SAP 
method, we take the adversarial perturbation as the parameter θ and add it to the 
clean examples after convolving with a number of Gaussian kernels. We denote 
K(s,σ) to be a Gaussian kernel with size s and standard deviation σ. The resulting 
adversarial example can be written as a function of θ:

xadv θð Þ ¼ x þ 1
m

Xm

i

θ⊛Kðs i½ &; σ i½ &Þ

In our experiment, we let s be {5, 7, 11, 15, 19} and σ be {1.0, 3.0, 5.0, 7.0, 10.0}.

Then we try to maximize the loss function with respect to θ to get the 
adversarial example in an untargeted attack. We still use PGD, but this time on θ:

θ0i ¼ Clip0;ϵ θ0i"1 þ αsign ∇θL f xadv θ0i"1

! "
; y

! "! "! "! "
ð2Þ

There are two major differences between update equations (2) and (1). In 
equation (2), we update θ, not xadv, and clip around zero, not the input x. In practice, 
we initialize the adversarial perturbation θ to be the one obtained from PGD 
ϵ ¼ 10; α ¼ 1;T ¼ 20ð Þ
I

 on x and run another PGD ϵ ¼ 10; α ¼ 1;T ¼ 40ð Þ
I

 on θ.
For targeted attacks (target class t), the update is

θ0i ¼ Clip0;ϵ θ0i"1 " αsign ∇θL f xadv θ0i"1

! "
; t

! "! "! "! "

If we take the same combination of convolution on the adversarial examples 
generated in PGD to create smooth adversarial examples, 71% of the originally 
correctly classified test ECGs are assigned different labels, which is worse than our 
smooth attack method (74%). The idea of optimizing the parameters of a smooth 
model could be expanded to other models, such as differential equation models of 
ECGs24, to find adversarial examples that more closely match human physiology.

Existence of adversarial examples. Our experiments are designed to show that 
adversarial examples are not rare. We only discuss untargeted attacks, but it is easy 
to extend our analysis to targeted attacks. We denote the original signal x and the 
generated adversarial example xadv.

First, we generate Gaussian noise δ such that δ½i" # N 0; 25ð Þ
I

 and then add it 
to the adversarial examples. To make sure the new examples are still smooth, we 
smooth the perturbation by convolving with the same Gaussian kernels as in our 
smooth attack method. We then clip the perturbation to make sure that it is still in 
the infinity norm ball. The newly generated example is

x0adv ¼ x þ Clip0;ϵ
1
m

Xm

i¼1

ðxadv þ δ$ xÞ⊛Kðs i½ '; σ i½ 'Þ
 !

We repeat the process of generating new examples 1,000 times. These newly 
generated examples are still adversarial examples. Some of them may intersect. 
For each intersected pair, we concatenate the left part of one example and the right 
part of the other to create new adversarial examples. Denote x1 and x2 to be a pair 
of adversarial examples that intersect. Suppose they intersect at time step t and the 
total length of the example is T. The new hybrid example x′ satisfies

x0 1 : t½ " ¼ x1 1 : t½ "; x0 t þ 1 : T½ " ¼ x2 t þ 1 : T½ "
where [1:t] means from time step 1 to time step t. All the newly concatenated 
examples are still misclassified by the network.

The 1,000 adversarial examples form a band. To emphasize that all the smooth 
signals in the band are still adversarial examples, we sample uniformly from the 
band to create new examples. Denote max[t] and min[t] to be the maximum value 
and minimum value of 1,000 samples at time step t. To sample a smooth signal 
from the band, we first sample a uniform random variable a t½ " # Uðmin t½ ";max t½ "Þ

I
 

for each time step t and then we smooth the perturbation. The example generated 
by uniform sampling and smoothing is

x0adv ¼ x þ Clip0;ϵ
1
m

Xm

i¼1

ða$ xÞ⊛Kðs i½ '; σ i½ 'Þ
 !

We repeat this procedure 1,000 times. All of the newly generated examples still 
cause the network to make the wrong diagnosis. We visualize the three procedures 
to show the existence of adversarial examples in Extended Data Fig. 2.

Limitations of adversarial training. Adversarial training12 is a more effective 
method to build robust models than including adversarial examples in the 
training data. However, adversarial training does well only on small image datasets 
like MNIST25, not larger ones like CIFAR1026. For CIFAR10, even dynamically 
including adversarial examples while training the model will not lead to a robust 
model27. In addition, there is no formal guarantee that adversarial training 
implemented with PGD can converge to the saddle point of the infinity norm 
minimax formulation of adversarial training. For example, switching to a higher-
order optimizer may produce different adversarial examples not captured by PGD-
based adversarial training.

Statistics and reproducibility. Figure 1a,b was generated for 50 AF signals and 
124 normal sinus rhythms. Figure 3 was generated twice. Extended Data Fig. 1 was 
generated for 40 examples. We obtained similar results for the examples we generated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset can be accessed from https://physionet.org/challenge/2017/.

Code availability
The code is available from https://github.com/XintianHan/ADV_ECG.
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Methods
Description of the traditional attack methods. Two traditional attack methods 
are the ‘fast gradient sign method’ (FGSM)23 and PGD12,13. !ese are white-box 
attack methods based on the gradients of the loss used to train the model with 
respect to the input. Both FGSM and PGD can be used for targeted and untargeted 
attacks. Targeted attacks force the network to output a speci"c incorrect label, 
while untargeted attacks force the network to make any wrong classi"cation. 
Untargeted attacks usually minimize the probability of the true class, while targeted 
attacks maximize the probability of the target class.

Denote our input entry x, true label y, classifier (network) f and loss function 
L(f(x),y). We describe FGSM and PGD in the following.
t� Untargeted attack

t� FGSM: FGSM is a fast algorithm. For an attack level ε, FGSM 
sets

xadv ¼ x þ ϵsign ∇xL f xð Þ; yð Þð Þ

 
!e attack level is chosen to be su#ciently small so as to be undetect-
able.
t� PGD: PGD is an improved version that uses multiple iterations 

of FGSM. De"ne Clipx,ε(x′) to project each x′ back to the in"nity 
norm ball by clamping the maximum absolute di$erence value 
between x and x′ to ε. Beginning by setting x00 ¼ x

I
, we have

x0i ¼ Clipx;ε x0i"1 þ αsign ∇xL f x0i"1; y
! "! "! "! "

ð1Þ

 
A%er T steps, we get our adversarial example xadv ¼ x0T

I
.

t� Targeted attack (target class t)

t� FGSM: For an attack level ε, FGSM sets
xadv ¼ x " ϵsign ∇xL f xð Þ; tð Þð Þ

t� PGD: Beginning by setting x00 ¼ x
I

, we have

x0i ¼ Clipx;ε x0i"1 " αsign ∇xL f x0i"1; t
! "! "! "! "

 
Unlike untargeted attacks, the gradient is subtracted. A%er T steps, 
we get our adversarial example xadv ¼ x0T

I
.

In this Letter, we use targeted attacks to change AF to Normal and untargeted 
attacks on classes besides AF.

Our smooth attack method. To smooth the signal, we use convolution. 
Convolution takes the weighted average of one position of the signal and its 
neighbors:

a⊛vð Þ n½ $ ¼
X2Kþ1

m¼1

a½n'mþ K þ 1$ ´ v½m$

where a is the objective function and v is the weight or kernel function. In our 
experiment, the weights are determined by a Gaussian kernel. Mathematically, if we 
have a Gaussian kernel of size 2K + 1 and standard deviation σ, we have

v m½ " ¼
exp $ m$K$1ð Þ2

2*σ2

! "

P2Kþ1
i¼1 exp $ i$K$1ð Þ2

2*σ2

! "

We can easily see that when σ goes to infinity, the convolution with the 
Gaussian kernel becomes a simple average; when σ goes to zero, the convolution 
becomes the identity function. Instead of taking an adversarial perturbation and 
then convolving it with the Gaussian kernels, we could create adversarial examples 
by optimizing a smooth perturbation that fools the neural network. We introduce 
our method of training ‘smooth adversarial perturbations’ (SAP). In our SAP 
method, we take the adversarial perturbation as the parameter θ and add it to the 
clean examples after convolving with a number of Gaussian kernels. We denote 
K(s,σ) to be a Gaussian kernel with size s and standard deviation σ. The resulting 
adversarial example can be written as a function of θ:

xadv θð Þ ¼ x þ 1
m

Xm

i

θ⊛Kðs i½ &; σ i½ &Þ

In our experiment, we let s be {5, 7, 11, 15, 19} and σ be {1.0, 3.0, 5.0, 7.0, 10.0}.

Then we try to maximize the loss function with respect to θ to get the 
adversarial example in an untargeted attack. We still use PGD, but this time on θ:

θ0i ¼ Clip0;ϵ θ0i"1 þ αsign ∇θL f xadv θ0i"1

! "
; y

! "! "! "! "
ð2Þ

There are two major differences between update equations (2) and (1). In 
equation (2), we update θ, not xadv, and clip around zero, not the input x. In practice, 
we initialize the adversarial perturbation θ to be the one obtained from PGD 
ϵ ¼ 10; α ¼ 1;T ¼ 20ð Þ
I

 on x and run another PGD ϵ ¼ 10; α ¼ 1;T ¼ 40ð Þ
I

 on θ.
For targeted attacks (target class t), the update is

θ0i ¼ Clip0;ϵ θ0i"1 " αsign ∇θL f xadv θ0i"1

! "
; t

! "! "! "! "

If we take the same combination of convolution on the adversarial examples 
generated in PGD to create smooth adversarial examples, 71% of the originally 
correctly classified test ECGs are assigned different labels, which is worse than our 
smooth attack method (74%). The idea of optimizing the parameters of a smooth 
model could be expanded to other models, such as differential equation models of 
ECGs24, to find adversarial examples that more closely match human physiology.

Existence of adversarial examples. Our experiments are designed to show that 
adversarial examples are not rare. We only discuss untargeted attacks, but it is easy 
to extend our analysis to targeted attacks. We denote the original signal x and the 
generated adversarial example xadv.

First, we generate Gaussian noise δ such that δ½i" # N 0; 25ð Þ
I

 and then add it 
to the adversarial examples. To make sure the new examples are still smooth, we 
smooth the perturbation by convolving with the same Gaussian kernels as in our 
smooth attack method. We then clip the perturbation to make sure that it is still in 
the infinity norm ball. The newly generated example is

x0adv ¼ x þ Clip0;ϵ
1
m

Xm

i¼1

ðxadv þ δ$ xÞ⊛Kðs i½ '; σ i½ 'Þ
 !

We repeat the process of generating new examples 1,000 times. These newly 
generated examples are still adversarial examples. Some of them may intersect. 
For each intersected pair, we concatenate the left part of one example and the right 
part of the other to create new adversarial examples. Denote x1 and x2 to be a pair 
of adversarial examples that intersect. Suppose they intersect at time step t and the 
total length of the example is T. The new hybrid example x′ satisfies

x0 1 : t½ " ¼ x1 1 : t½ "; x0 t þ 1 : T½ " ¼ x2 t þ 1 : T½ "
where [1:t] means from time step 1 to time step t. All the newly concatenated 
examples are still misclassified by the network.

The 1,000 adversarial examples form a band. To emphasize that all the smooth 
signals in the band are still adversarial examples, we sample uniformly from the 
band to create new examples. Denote max[t] and min[t] to be the maximum value 
and minimum value of 1,000 samples at time step t. To sample a smooth signal 
from the band, we first sample a uniform random variable a t½ " # Uðmin t½ ";max t½ "Þ

I
 

for each time step t and then we smooth the perturbation. The example generated 
by uniform sampling and smoothing is

x0adv ¼ x þ Clip0;ϵ
1
m

Xm

i¼1

ða$ xÞ⊛Kðs i½ '; σ i½ 'Þ
 !

We repeat this procedure 1,000 times. All of the newly generated examples still 
cause the network to make the wrong diagnosis. We visualize the three procedures 
to show the existence of adversarial examples in Extended Data Fig. 2.

Limitations of adversarial training. Adversarial training12 is a more effective 
method to build robust models than including adversarial examples in the 
training data. However, adversarial training does well only on small image datasets 
like MNIST25, not larger ones like CIFAR1026. For CIFAR10, even dynamically 
including adversarial examples while training the model will not lead to a robust 
model27. In addition, there is no formal guarantee that adversarial training 
implemented with PGD can converge to the saddle point of the infinity norm 
minimax formulation of adversarial training. For example, switching to a higher-
order optimizer may produce different adversarial examples not captured by PGD-
based adversarial training.

Statistics and reproducibility. Figure 1a,b was generated for 50 AF signals and 
124 normal sinus rhythms. Figure 3 was generated twice. Extended Data Fig. 1 was 
generated for 40 examples. We obtained similar results for the examples we generated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset can be accessed from https://physionet.org/challenge/2017/.

Code availability
The code is available from https://github.com/XintianHan/ADV_ECG.
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In this work, they use a slightly different kind of attack called the projected gradient attack
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By taking a weighted average of nearby time steps, we crafted 
smooth adversarial examples that cannot be distinguished from 
original ECG signals but will still fool the deep network to make a 
wrong prediction (see Methods).

We generated adversarial examples on the test set. We trans-
formed the test examples to make the network change the label of 
Normal, Other and Noise to any other label. For AF, we altered the 
AF test examples so that the deep neural network classifies them 
as Normal. We can also alter Normal, AF, Other and Noise to any 
given label. The results are presented in Table 1. Misdiagnosis of AF 
as Normal may increase the risk of AF-related complications such as 
stroke and heart failure. We showcase the generation of adversarial 
examples in Fig. 1.

After adversarial attacks, 74% of the test ECGs originally clas-
sified correctly by the network are now assigned a different diag-
nosis, ultimately showing that deep ECG classifiers are vulnerable 
to adversarial examples. To assess how the generated signals would 
be classified by human experts, we invited one board-certified 
medicine specialist and one cardiac electrophysiology specialist to 
diagnose whether signals generated by our methods and original 
ECGs come from the same class. Figure 2a shows that almost all of 
the modified signals were judged as belonging to the same class as 
the original signal. This shows that the deep network failed to cor-
rectly classify most of the newly generated examples, when a human 
would have assigned only 1.4% of them to a different class.

We also invited the clinical specialists to distinguish ECG signals 
from the adversarial examples generated by our smooth method and 
the traditional attack method based on ‘projected gradient descent’ 
(PGD)12,13. The question we asked was ‘Which one in the pair is the 
real ECG?’ The calculated probability of correctly identifying ECGs 
is the number of correct answers they obtained for each pair over 
the number of pairs we showed them. The doctors were not shown 
adversarial examples beforehand.

Figure 2b shows that the adversarial examples generated by  
our method are significantly harder for clinicians to distinguish 
from the original ECG than the traditional attack method. On 
average, the clinicians were able to correctly identify the smoothed 
adversarial examples from their original counterpart 62% of the 
time. (The electrophysiology specialist was slightly more accu-
rate at 65% versus 59%.) PGD examples are easier for clinicians to 
detect because of square-wave discontinuity artefacts that are not 
physiologically plausible. These discontinuities also appear in PGD 
examples of images, but in images they are hidden by the resolution 
and color channels.

Here, we provide a construction that shows that adversarial 
examples are not rare. In particular, we show that it is possible to 
create more examples that remain adversarial by adding a small 
amount of Gaussian noise to an original adversarial example and 
then smoothing the result. We repeated this process 1,000 times and 

found that the deep neural network still incorrectly classified all 
1,000 new, adversarial examples. Adding Gaussian noise could still 
produce adversarial examples on 87.6% of the test examples from 
which adversarial examples were generated. We plotted all of the 
newly crafted adversarial examples, which form a band around the 
original ECG signal, as shown in Fig. 3. The signals in the band may 
intersect. We chose pairs of intersecting signals and concatenated 
the left half of one signal with the right half of the other to cre-
ate a new example. We found that signals created by concatenation 
are also adversarial examples. We also sampled random values in 
the band for each time step and then smoothed them to create new 
adversarial examples. These different perturbations on adversarial 
examples all led to new examples that remained mislabeled. This 
means that the adversarial examples should not be considered as 
rare isolated cases, in that from a single adversarial example, many 
more can be created.

The use of machine learning algorithms as a healthcare tool for 
clinical interpretation and prediction is seeing an unprecedented 
surge. A search in PubMed for the phrases ‘electrocardiogram’ AND 
(‘machine learning’ OR ‘artificial intelligence’) yields over 1,200 
publications. Specifically, deep learning has been utilized recently 
to create algorithms that predict the ejection fraction14, predict the 
susceptibility to QT prolongation in patients with normal QT inter-
vals (https://www.alivecor.com/research/investigational-qt/artifi-
cial-intelligence-and-deep-neural-networks/) and identify patients 
with hyperkalemia15—all based on the ECG and demographics, 
without any additional clinical information. This promising ability 
of deep learning algorithms to reduce the cost or improve the per-
formance of complex and laborious daily clinical challenges is cre-
ating significant incentive for rapid implementation and approval 
as practical clinical tools. Correspondingly, 23 machine learning 
algorithms, many that use deep learning, have been approved by 
the FDA for medical use in 2018 alone, a 283% increase from 2017 
(https://medicalfuturist.com/fda-approvals-for-algorithms-in-
medicine/). Products for arrhythmia classification with single-lead 
ECGs such as the Apple Watch, which sold over 20 million units 

Table 1 | Success rate of the targeted smooth attack method

Target class

Normal 
(%)

AF 
(%)

Other 
(%)

Noise 
(%)

Original class Normal – 57 55 13
AF 74 – 87 22
Other 72 76 – 20

Noise 79 64 57 –

The original class is the class into which the network classifies the signal before the adversarial attack. 
The target class is the class into which the adversarial attack aimed to make the network classify the 
signal after adding. The success rate is calculated as the percentage of examples from the original 
class that were misclassified by the network to the target class after the adversarial attack.
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Fig. 1 | Demonstration of disruptive adversarial examples. a, Example 
of an original ECG tracing that was correctly diagnosed by the network 
as atrial fibrillation (AF) with 100% confidence, but, after the addition of 
smooth perturbations, was diagnosed wrongly as normal sinus rhythm 
(Normal) with 100% confidence. b, Example of an original ECG tracing that 
was correctly diagnosed by the network as Normal with 100% confidence, 
but after the addition of smooth perturbations was diagnosed wrongly as 
AF. Perturbation and tracing voltages are plotted on the same scale.
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How can we protect against an adversarial 
attack?LETTERS NATURE MEDICINE

in 2018 alone (https://ww.9to5mac.com/2019/02/27/apple-watch-
sales-2018/), and the Alivecor Kardia, which uses deep learning 
and has recorded over 25 million ECGs (https://www.alivecor.com/

press/press_release/alivecor-data-yield-reaches-25mm-ecgs/), are 
increasingly being adopted. Hence, it is imperative to understand 
the limitations and vulnerabilities of the deep learning algorithms 
used to detect arrhythmia from ECGs.

In this work, we demonstrate the ability to add imperceptible 
perturbations to ECG tracings to create adversarial examples that 
fool a deep neural network classifier into assigning the examples to 
an incorrect rhythm class. Moreover, we show that such examples 
are not rare.

These findings question the safety of using deep learning in ana-
lyzing ECGs at a scale where millions of tests may be run every week 
by widespread consumer devices. To increase robustness to adver-
sarial examples, it is crucial that classification methods for ECGs, 
especially those intended to operate without human supervision, 
generalize well to new examples. However, generalization may be a 
significant challenge, because different environments and different 
devices can introduce unknown perturbations to the signal. Thus, 
ensuring safe generalization would require obtaining labeled data 
from each new environment and new device.

One way to protect against adversarial examples is adversarial 
training. Adversarial training works by generating adversarial 
examples repeatedly during model training based on the current 
model and adding them to the training batch used to improve the 
model12. However, such approaches can only protect against known 
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Network classification of adversarial examples

74% incorrect 26% correct

Each adversarial example is paired
with its original counterpart

Clinicians evaluate original/adversarial pairs

98.6% pairs identified as 
coming from the same class

1.4% pairs identified as 
coming from different classes
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versus generated ECG by clinician
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Smooth attack
(this work)

Traditional attack (PGD) 95%

62%
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Fig. 2 | Accuracy of the network in classifying adversarial examples and clinician success rate in distinguishing authentic ECGs from adversarial 
examples. a, Top: schematic showing that a smooth adversarial attack generated adversarial examples of ECG tracings that were misclassified in 74% of 
cases. Bottom: schematic showing that the surveyed clinicians concluded that 246.5/250 pairs of adversarial examples and the original ECGs belonged to 
the same class. b, Schematic showing the success rate of ECG interpretation experts in distinguishing between 100 pairs of original ECGs and adversarial 
examples generated by the traditional attack method (PGD), the smooth attack method and the ideal attack method. The ideal attack method creates 
signals that clinicians cannot distinguish completely from the original signals.

Original example

Adversarial examples

Fig. 3 | Perturbing a known adversarial example to generate multiple new 
ones. Schematic showing that 1,000 different adversarial examples can 
be generated from the original ECG signal by adding small Gaussian noise 
and smoothing. The newly generated adversarial examples, as well as the 
original ECG signal, are plotted at the top. A portion of the original ECG 
signal and adversarial examples is enlarged in the circle below; the newly 
generated examples form a wide band around the original example.
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How good is the attack generation strategy?
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in 2018 alone (https://ww.9to5mac.com/2019/02/27/apple-watch-
sales-2018/), and the Alivecor Kardia, which uses deep learning 
and has recorded over 25 million ECGs (https://www.alivecor.com/

press/press_release/alivecor-data-yield-reaches-25mm-ecgs/), are 
increasingly being adopted. Hence, it is imperative to understand 
the limitations and vulnerabilities of the deep learning algorithms 
used to detect arrhythmia from ECGs.

In this work, we demonstrate the ability to add imperceptible 
perturbations to ECG tracings to create adversarial examples that 
fool a deep neural network classifier into assigning the examples to 
an incorrect rhythm class. Moreover, we show that such examples 
are not rare.

These findings question the safety of using deep learning in ana-
lyzing ECGs at a scale where millions of tests may be run every week 
by widespread consumer devices. To increase robustness to adver-
sarial examples, it is crucial that classification methods for ECGs, 
especially those intended to operate without human supervision, 
generalize well to new examples. However, generalization may be a 
significant challenge, because different environments and different 
devices can introduce unknown perturbations to the signal. Thus, 
ensuring safe generalization would require obtaining labeled data 
from each new environment and new device.

One way to protect against adversarial examples is adversarial 
training. Adversarial training works by generating adversarial 
examples repeatedly during model training based on the current 
model and adding them to the training batch used to improve the 
model12. However, such approaches can only protect against known 

Smooth
adversarial

attack

Network classification of adversarial examples

74% incorrect 26% correct

Each adversarial example is paired
with its original counterpart

Clinicians evaluate original/adversarial pairs

98.6% pairs identified as 
coming from the same class

1.4% pairs identified as 
coming from different classes

a

b

Adversarial
attacks

Each adversarial 
example is paired
with its original 

counterpart

Correct identification of original
versus generated ECG by clinician

0% 25% 50% 75% 75%

Smooth attack
(this work)

Traditional attack (PGD) 95%

62%

50%Ideal attack

Fig. 2 | Accuracy of the network in classifying adversarial examples and clinician success rate in distinguishing authentic ECGs from adversarial 
examples. a, Top: schematic showing that a smooth adversarial attack generated adversarial examples of ECG tracings that were misclassified in 74% of 
cases. Bottom: schematic showing that the surveyed clinicians concluded that 246.5/250 pairs of adversarial examples and the original ECGs belonged to 
the same class. b, Schematic showing the success rate of ECG interpretation experts in distinguishing between 100 pairs of original ECGs and adversarial 
examples generated by the traditional attack method (PGD), the smooth attack method and the ideal attack method. The ideal attack method creates 
signals that clinicians cannot distinguish completely from the original signals.
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Fig. 3 | Perturbing a known adversarial example to generate multiple new 
ones. Schematic showing that 1,000 different adversarial examples can 
be generated from the original ECG signal by adding small Gaussian noise 
and smoothing. The newly generated adversarial examples, as well as the 
original ECG signal, are plotted at the top. A portion of the original ECG 
signal and adversarial examples is enlarged in the circle below; the newly 
generated examples form a wide band around the original example.
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How easy is it to change the class label?
LETTERSNATURE MEDICINE

By taking a weighted average of nearby time steps, we crafted 
smooth adversarial examples that cannot be distinguished from 
original ECG signals but will still fool the deep network to make a 
wrong prediction (see Methods).

We generated adversarial examples on the test set. We trans-
formed the test examples to make the network change the label of 
Normal, Other and Noise to any other label. For AF, we altered the 
AF test examples so that the deep neural network classifies them 
as Normal. We can also alter Normal, AF, Other and Noise to any 
given label. The results are presented in Table 1. Misdiagnosis of AF 
as Normal may increase the risk of AF-related complications such as 
stroke and heart failure. We showcase the generation of adversarial 
examples in Fig. 1.

After adversarial attacks, 74% of the test ECGs originally clas-
sified correctly by the network are now assigned a different diag-
nosis, ultimately showing that deep ECG classifiers are vulnerable 
to adversarial examples. To assess how the generated signals would 
be classified by human experts, we invited one board-certified 
medicine specialist and one cardiac electrophysiology specialist to 
diagnose whether signals generated by our methods and original 
ECGs come from the same class. Figure 2a shows that almost all of 
the modified signals were judged as belonging to the same class as 
the original signal. This shows that the deep network failed to cor-
rectly classify most of the newly generated examples, when a human 
would have assigned only 1.4% of them to a different class.

We also invited the clinical specialists to distinguish ECG signals 
from the adversarial examples generated by our smooth method and 
the traditional attack method based on ‘projected gradient descent’ 
(PGD)12,13. The question we asked was ‘Which one in the pair is the 
real ECG?’ The calculated probability of correctly identifying ECGs 
is the number of correct answers they obtained for each pair over 
the number of pairs we showed them. The doctors were not shown 
adversarial examples beforehand.

Figure 2b shows that the adversarial examples generated by  
our method are significantly harder for clinicians to distinguish 
from the original ECG than the traditional attack method. On 
average, the clinicians were able to correctly identify the smoothed 
adversarial examples from their original counterpart 62% of the 
time. (The electrophysiology specialist was slightly more accu-
rate at 65% versus 59%.) PGD examples are easier for clinicians to 
detect because of square-wave discontinuity artefacts that are not 
physiologically plausible. These discontinuities also appear in PGD 
examples of images, but in images they are hidden by the resolution 
and color channels.

Here, we provide a construction that shows that adversarial 
examples are not rare. In particular, we show that it is possible to 
create more examples that remain adversarial by adding a small 
amount of Gaussian noise to an original adversarial example and 
then smoothing the result. We repeated this process 1,000 times and 

found that the deep neural network still incorrectly classified all 
1,000 new, adversarial examples. Adding Gaussian noise could still 
produce adversarial examples on 87.6% of the test examples from 
which adversarial examples were generated. We plotted all of the 
newly crafted adversarial examples, which form a band around the 
original ECG signal, as shown in Fig. 3. The signals in the band may 
intersect. We chose pairs of intersecting signals and concatenated 
the left half of one signal with the right half of the other to cre-
ate a new example. We found that signals created by concatenation 
are also adversarial examples. We also sampled random values in 
the band for each time step and then smoothed them to create new 
adversarial examples. These different perturbations on adversarial 
examples all led to new examples that remained mislabeled. This 
means that the adversarial examples should not be considered as 
rare isolated cases, in that from a single adversarial example, many 
more can be created.

The use of machine learning algorithms as a healthcare tool for 
clinical interpretation and prediction is seeing an unprecedented 
surge. A search in PubMed for the phrases ‘electrocardiogram’ AND 
(‘machine learning’ OR ‘artificial intelligence’) yields over 1,200 
publications. Specifically, deep learning has been utilized recently 
to create algorithms that predict the ejection fraction14, predict the 
susceptibility to QT prolongation in patients with normal QT inter-
vals (https://www.alivecor.com/research/investigational-qt/artifi-
cial-intelligence-and-deep-neural-networks/) and identify patients 
with hyperkalemia15—all based on the ECG and demographics, 
without any additional clinical information. This promising ability 
of deep learning algorithms to reduce the cost or improve the per-
formance of complex and laborious daily clinical challenges is cre-
ating significant incentive for rapid implementation and approval 
as practical clinical tools. Correspondingly, 23 machine learning 
algorithms, many that use deep learning, have been approved by 
the FDA for medical use in 2018 alone, a 283% increase from 2017 
(https://medicalfuturist.com/fda-approvals-for-algorithms-in-
medicine/). Products for arrhythmia classification with single-lead 
ECGs such as the Apple Watch, which sold over 20 million units 

Table 1 | Success rate of the targeted smooth attack method

Target class

Normal 
(%)

AF 
(%)

Other 
(%)

Noise 
(%)

Original class Normal – 57 55 13
AF 74 – 87 22
Other 72 76 – 20

Noise 79 64 57 –

The original class is the class into which the network classifies the signal before the adversarial attack. 
The target class is the class into which the adversarial attack aimed to make the network classify the 
signal after adding. The success rate is calculated as the percentage of examples from the original 
class that were misclassified by the network to the target class after the adversarial attack.
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Fig. 1 | Demonstration of disruptive adversarial examples. a, Example 
of an original ECG tracing that was correctly diagnosed by the network 
as atrial fibrillation (AF) with 100% confidence, but, after the addition of 
smooth perturbations, was diagnosed wrongly as normal sinus rhythm 
(Normal) with 100% confidence. b, Example of an original ECG tracing that 
was correctly diagnosed by the network as Normal with 100% confidence, 
but after the addition of smooth perturbations was diagnosed wrongly as 
AF. Perturbation and tracing voltages are plotted on the same scale.
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Summary

• Showcased that adversarial attacks are not restricted to images and 
can be adapted to clinical time-series data too
• Important to know this before making decisions from algorithms 

deployed in open-world scenarios: 
• Might be difficult to inject an adversarial attack into a radiologist’s software 

platform 
• Might be easy to inject an attack into a publicly visible and available platform



Questions?

• On Friday, Nikhil has kindly agreed to present on another technique 
for interpretability: LIME and Shapley values


