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Announcements

• Last few weeks of classes – project presentations start next week
• Come by office hours
• TAs will reach out for practice presentations – note that each 

presentation should be ~25 minutes (including 3 mins for questions)



Outline

• Last week: Covariate adjustment for estimating causal effects
• Key idea: Use machine learning to predict outcome given features and impute 

counterfactuals

• This lecture: Matching & Propensity score matching
• Missingness
• Next lecture: case studies in ML4H



Recap: Covariate adjustment
Covariate	adjustment	
(parametric	g-formula)

• Explicitly	model	the	relationship	between	
treatment,	confounders,	and	outcome

• Under	ignorability,	the	expected	causal	effect	
of	# on	$:
17~5 7 	1 $+ # = 1, & − 1 $( # = 0, &

• Fit	a	model	^ &, @ ≈ 1 $̀ # = @, &

-.#/a &' = ^ &', 1 − ^(&', 0)



Matching

• Find each individual’s nearest counterfactual twin and use their 
outcome as a proxy for the individual’s counterfactual

Match	to	nearest	neighbor	from	
opposite	group

Treated

Control Age

Charleson
comorbidity
index

Identical to covariate 
adjustment when 1NN classifier 

is used as a classifier



Effect estimation with matching

<latexit sha1_base64="/IkB7lETBO0Ev63Otg4OZiUfsOM="></latexit>

8i cfac(i) = argminj; ti 6=tjd(xj , xi)

CATE(xi) = I[ti == 1](yi � ycfac(i))

+ I[ti == 0](ycfac(i) � yi)

ATE =
1

n

X

i

CATE(xi) Sensitive to the choice of metric d

Suffers from all the limitations of K-
Nearest Neighbors

Interpretable!

Non-parametric



Propensity scores

• Reweight samples to turn an observational study into a pseudo-
randomized trial

Inverse	propensity	score	re-weighting

!' = jkl

!; =
Charlson
comorbidity	
index

Treated

Control

m(!|B = 0) ≠ m ! B = 1
control			 treated

m ! B = 0 ⋅ o$(!) ≈ m ! B = 1 ⋅ o'(!)
reweighted	control					reweighted	treated

Inverse	propensity	score	re-weighting

!' = jkl

!; =
Charlson
comorbidity	
index

Treated

Control

Find
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Propensity score (algorithm)Propensity	scores	– algorithm
Inverse	probability	of	treatment	weighted	estimator

How	to	calculate	ATE	with	propensity	score
for	sample	 !', B', ?' , … , (!d, Bd, ?d)

1. Use	any	ML	method	to	estimate	mV + = B !

2. ˆATE =
1

n

X

i s.t. ti=1

yi
p̂(ti = 1|xi)

� 1

n

X

i s.t. ti=0

yi
p̂(ti = 0|xi)



Propensity score (for an RCT)Propensity	scores	– algorithm
Inverse	probability	of	treatment	weighted	estimator

How	to	calculate	ATE	with	propensity	score
for	sample	 !', B', ?' , … , (!d, Bd, ?d)

1. Randomized	trial	m = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi

Sum	over	~r
s terms



Propensity score - derivation

• We	want:

• We	know	that:

• Thus:

• We	can	approximate	this	empirically	as:

(similarly	for	ti=0)

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)

Ex⇠p(x)[Y1(x)]

Ex⇠p(x|T=1)


p(T = 1)

p(T = 1 | x)Y1(x)

�
= Ex⇠p(x)[Y1(x)]

1

n1

X

i s.t.ti=1


n1/n

p̂(ti = 1 | xi)
yi

�
=

1

n

X

i s.t.ti=1

yi
p̂(ti = 1 | xi)



Propensity score - challenges

• If not much overlap, scores become non-informative
• Think about what happens if P(T=1|X) = 1 or 0 vs 0.5

• When propensity scores are small, the estimators have a large 
variance



Natural experiments
Many	more	ideas	and	methods	–

Natural	experiments
• Does	stress	during	pregnancy	affect	later	child	
development?

• Confounding:	genetic,	mother	personality,	
economic	factors…

• Natural	experiment:	the	Cuban	missile	crisis	of	
October	1962.	Many	people	were	afraid	a	nuclear	
war	is	about	to	break	out.

• Compare	children	who	were	in	utero	during	the	
crisis	with	children	from	immediately	before	and	
after



Instrumental Variables
Many	more	ideas	and	methods	–

Instrumental	variables

• Informally:	a	variable	which	affects	treatment	
assignment	but	not	the	outcome

• Example:	are	private	schools	better	than	public	
schools?

• Can’t	force	people	which	school	to	go	to
• Can	randomly give	out	vouchers	to	some	children,	
giving	them	an	opportunity	to	attend	private	
schools

• The	voucher	assignment	is	the	instrumental	
variable



Causal inference - Overview

• The last two lectures give us an overview of two techniques to estimate 
causal effects:
• Assumptions necessary for causal inference 

• Positivity
• Common support
• No unobserved confounding 

• Covariate adjustment
• Propensity score matching
• Key idea: Using assumptions to write down estimators of causal effects using 

observational data

• Many more extensions to more complex regimes where data are time-
varying



Missingness

• Missingness is a common aspect of many kinds of data in healthcare
• Unlike domains like computer vision and natural language processing
• Important to know how to: 
• Identifying and categorize the different kinds of missingness
• Know about common techniques used to handle missing data and their 

limitations/strengths 



Why does missingness occur in clinical data?



Rationales for 
missingness
• Patients do not consistently interact 

with the healthcare system

• Errors in data entry

• Errors in extracting information 
from the Electronic Medical Record 
(typically a set of SQL tables inside 
a hospital database)



Handling missingness

• How well does imputation do?
• In general, it depends on the kind of missingness
• Lets see a specific example of how things can go wrong



Ramifications of improperly handling 
missingness

2.

3. Assume that we have access to a large number of samples (~100K) of x 
under two kinds of missingness 
4. Assess the effect of learning regression function 

when data are missing and imputed with 0

<latexit sha1_base64="MjmvJdDdD8gTL1459gCuVsMnIVc=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyFByIPdENQmELSxjJAXZNcwO5kkQ2Znl5lZYwj5Aht/xcZCEVtrO//GyaPQxAMXDufcy733eCGjUlnWtxFbW9/Y3IpvJ3Z29/YPzMOjugwigUkNBywQTQ9JwignNUUVI81QEOR7jDS8wfXUb9wTIWnAq2oUEtdHPU67FCOlpbaZGqVLsJiBw7vqQ8YhoaQs4I6TGKZLLTtbyObsbK7gts2klbdmgKvEXpAkWKDSNr+cToAjn3CFGZKyZVuhcsdIKIoZmSScSJIQ4QHqkZamHPlEuuPZOxOY0koHdgOhiys4U39PjJEv5cj3dKePVF8ue1PxP68Vqe6lO6Y8jBTheL6oGzGoAjjNBnaoIFixkSYIC6pvhbiPBMJKJ5jQIdjLL6+SeiFvn+eLt8Vk+WoRRxycgFNwBmxwAcrgBlRADWDwCJ7BK3gznowX4934mLfGjMXMMfgD4/MHtqGYuw==</latexit>

y = 4 + wTx+ ✏

w = [1, 2,�1,�2]

1. Generate synthetic data matrix and learn a linear regression model. Our goal 
is to estimate the first feature of vector w



Missingness mechanism for feature (1)

• Missingness mechanism: 
• Flip a coin, if heads, impute second 

feature with 0, if tails do not impute

• Train linear regression with imputed 
features
• Look at learned coefficients



Missingness mechanism for feature (2)

• Missingness mechanism:
• If second feature is greater than 4,  

then impute to 0, otherwise do not
impute

• Train linear regression with imputed 
features
• Look at learned coefficients

Question: Will we recover the true regression coefficients? In which case 
is the recovery easier/harder?



Results

Question: Which missingness is harder to recover parameters from?

w* = [1.0025 1.995 -0.9999 -1.997] w* = [1.622 -0.372 -0.375 -1.369]

w* = [1. 2. -1. -2.]

Scenario (1) Scenario (2) 

Ground truth

Not all missingness is created equal – some are harder to recover from and naïve methods for imputation can 
result in biased parameters



A taxonomy of missingness

• Graphical Models for Inference with Missing Data, Mohan et. al, 2013
• Addresses the problem of recoverability – deciding when there exists

a consistent estimator for a probabilistic query
• Key idea: 
• Derive a causal graph that characterizes the missingness process
• Use this representation to derive conditions under which query can be 

answered



Missingness graphs

deletion (or “available case”) is a deletion method used for estimating pairwise relations among vari-
ables. For example, to compute the covariance of variables X and Y , all those cases or observations
in which both X and Y are observed are used, regardless of whether other variables in the dataset
have missing values.

The expectation-maximization (EM) algorithm is a general technique for finding maximum like-
lihood (ML) estimates from incomplete data. It has been proven that likelihood-based inference
while ignoring the missing data mechanism, leads to unbiased estimates under the assumption of
missing at random (MAR) [13]. Most work in machine learning assumes MAR and proceeds with
ML or Bayesian inference. Exceptions are recent works on collaborative filtering and recommender
systems which develop probabilistic models that explicitly incorporate missing data mechanism
[16, 14, 15]. ML is often used in conjunction with imputation methods, which in layman terms,
substitutes a reasonable guess for each missing value [1]. A simple example is Mean Substitution, in
which all missing observations of variable X are substituted with the mean of all observed values of
X . Hot-deck imputation, cold-deck imputation [17] and Multiple Imputation [26, 27] are examples
of popular imputation procedures. Although these techniques work well in practice, performance
guarantees (eg: convergence and unbiasedness) are based primarily on simulation experiments.

Missing data discussed so far is a special case of coarse data, namely data that contains observations
made in the power set rather than the sample space of variables of interest [12]. The notion of coars-
ening at random (CAR) was introduced in [12] and identifies the condition under which coarsening
mechanism can be ignored while drawing inferences on the distribution of variables of interest [10].
The notion of sequential CAR has been discussed in [9]. For a detailed discussion on coarsened data
refer to [30].

Missing data literature leaves many unanswered questions with regard to theoretical guarantees for
the resulting estimates, the nature of the assumptions that must be made prior to employing various
procedures and whether the assumptions are testable. For a gentle introduction to the missing data
problem and the issue of testability refer to [22, 19]. This paper aims to illuminate missing data
problems using causal graphs [See Appendix 5.2 for justification]. The questions we pose are:
Given a target relation Q to be estimated and a set of assumptions about the missingness process
encoded in a graphical model, under what conditions does a consistent estimate exist and how can
we elicit it from the data available?

We answer these questions with the aid of Missingness Graphs (m-graphs in short) to be described
in Section 2. Furthermore, we review the traditional taxonomy of missing data problems and cast it
in graphical terms. In Section 3 we define the notion of recoverability - the existence of a consistent
estimate - and present graphical conditions for detecting recoverability of a given probabilistic query
Q. Conclusions are drawn in Section 4.

2 Graphical Representation of the Missingness Process

2.1 Missingness Graphs
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(a)

X Y

Y*
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X Y

(b)
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RyRx
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(d)

Figure 1: m-graphs for data that are: (a) MCAR, (b) MAR, (c) & (d) MNAR; Hollow and solid
circles denote partially and fully observed variables respectively.

Graphical models such as DAGs (Directed Acyclic Graphs) can be used for encoding as well as
portraying conditional independencies and causal relations, and the graphical criterion called d-
separation (refer Appendix-5.1, Definition-3) can be used to read them off the graph [21, 20]. Graph-
ical Models have been used to analyze missing information in the form of missing cases (due to
sample selection bias)[4]. Using causal graphs, [8]- analyzes missingness due to attrition (partially

2

observed outcome) and [29]- cautions against the indiscriminate use of auxiliary variables. In both
papers missing values are associated with one variable and interactions among several missingness
mechanisms remain unexplored.

The need exists for a general approach capable of modeling an arbitrary data-generating process and
deciding whether (and how) missingness can be outmaneuvered in every dataset generated by that
process. Such a general approach should allow each variable to be governed by its own missingness
mechanism, and each mechanism to be triggered by other (potentially) partially observed variables
in the model. To achieve this flexibility we use a graphical model called “missingness graph” (m-
graph, for short) which is a DAG (Directed Acyclic Graph) defined as follows.

Let G(V, E) be the causal DAG where V = V [ U [ V
⇤ [ R. V is the set of observable nodes.

Nodes in the graph correspond to variables in the data set. U is the set of unobserved nodes (also
called latent variables). E is the set of edges in the DAG. Oftentimes we use bi-directed edges as
a shorthand notation to denote the existence of a U variable as common parent of two variables in
Vo [ Vm [ R. V is partitioned into Vo and Vm such that Vo ✓ V is the set of variables that are
observed in all records in the population and Vm ✓ V is the set of variables that are missing in
at least one record. Variable X is termed as fully observed if X 2 Vo and partially observed if
X 2 Vm.

Associated with every partially observed variable Vi 2 Vm are two other variables Rvi and V
⇤
i ,

where V
⇤
i is a proxy variable that is actually observed, and Rvi represents the status of the causal

mechanism responsible for the missingness of V ⇤
i ; formally,

v
⇤
i = f(rvi , vi) =

⇢
vi if rvi = 0
m if rvi = 1 (1)

Contrary to conventional use, Rvi is not treated merely as the missingness indicator but as a driver
(or a switch) that enforces equality between Vi and V

⇤
i . V

⇤ is a set of all proxy variables and
R is the set of all causal mechanisms that are responsible for missingness. R variables may not
be parents of variables in V [ U . This graphical representation succinctly depicts both the causal
relationships among variables in V and the process that accounts for missingness in some of the
variables. We call this graphical representation Missingness Graph or m-graph for short. Since
every d-separation in the graph implies conditional independence in the distribution [21], the m-
graph provides an effective way of representing the statistical properties of the missingness process
and, hence, the potential of recovering the statistics of variables in Vm from partially missing data.

2.2 Taxonomy of Missingness Mechanisms

It is common to classify missing data mechanisms into three types [25, 13]:
Missing Completely At Random (MCAR) : Data are MCAR if the probability that Vm is missing
is independent of Vm or any other variable in the study, as would be the case when respondents
decide to reveal their income levels based on coin-flips.
Missing At Random (MAR) : Data are MAR if for all data cases Y , P (R|Yobs, Ymis) = P (R|Yobs)
where Yobs denotes the observed component of Y and Ymis, the missing component. Example:
Women in the population are more likely to not reveal their age.
Missing Not At Random (MNAR) or “non-ignorable missing”: Data that are neither MAR nor
MCAR are termed as MNAR. Example: Online shoppers rate an item with a high probability either
if they love the item or if they loathe it. In other words, the probability that a shopper supplies a
rating is dependent on the shopper’s underlying liking [16].

Because it invokes specific values of the observed and unobserved variables, (i.e., Yobs and Ymis),
many authors find Rubin’s definition difficult to apply in practice and prefer to work with definitions
expressed in terms of independencies among variables (see [28, 11, 6, 17]). In the graph-based
interpretation used in this paper, MCAR is defined as total independence between R and Vo[Vm[U
i.e. R??(Vo [Vm [U), as depicted in Figure 1(a). MAR is defined as independence between R and
Vm[U given Vo i.e. R??Vm[U |Vo, as depicted in Figure 1(b). Finally if neither of these conditions
hold, data are termed MNAR, as depicted in Figure 1(c) and (d). This graph-based interpretation uses
slightly stronger assumptions than Rubin’s, with the advantage that the user can comprehend, encode
and communicate the assumptions that determine the classification of the problem. Additionally, the
conditional independencies that define each class are represented explicitly as separation conditions

3



MCAR [Missing completely at random]
• The indicator (R) that decides 

whether or not we observe 
the value of Y is marginally 
independent
• Often leads to consistent 

estimates for probabilistic 
queries
• Example: Tabular data 

corrupted randomly during 
transmission due to a noisy 
channel

deletion (or “available case”) is a deletion method used for estimating pairwise relations among vari-
ables. For example, to compute the covariance of variables X and Y , all those cases or observations
in which both X and Y are observed are used, regardless of whether other variables in the dataset
have missing values.

The expectation-maximization (EM) algorithm is a general technique for finding maximum like-
lihood (ML) estimates from incomplete data. It has been proven that likelihood-based inference
while ignoring the missing data mechanism, leads to unbiased estimates under the assumption of
missing at random (MAR) [13]. Most work in machine learning assumes MAR and proceeds with
ML or Bayesian inference. Exceptions are recent works on collaborative filtering and recommender
systems which develop probabilistic models that explicitly incorporate missing data mechanism
[16, 14, 15]. ML is often used in conjunction with imputation methods, which in layman terms,
substitutes a reasonable guess for each missing value [1]. A simple example is Mean Substitution, in
which all missing observations of variable X are substituted with the mean of all observed values of
X . Hot-deck imputation, cold-deck imputation [17] and Multiple Imputation [26, 27] are examples
of popular imputation procedures. Although these techniques work well in practice, performance
guarantees (eg: convergence and unbiasedness) are based primarily on simulation experiments.

Missing data discussed so far is a special case of coarse data, namely data that contains observations
made in the power set rather than the sample space of variables of interest [12]. The notion of coars-
ening at random (CAR) was introduced in [12] and identifies the condition under which coarsening
mechanism can be ignored while drawing inferences on the distribution of variables of interest [10].
The notion of sequential CAR has been discussed in [9]. For a detailed discussion on coarsened data
refer to [30].

Missing data literature leaves many unanswered questions with regard to theoretical guarantees for
the resulting estimates, the nature of the assumptions that must be made prior to employing various
procedures and whether the assumptions are testable. For a gentle introduction to the missing data
problem and the issue of testability refer to [22, 19]. This paper aims to illuminate missing data
problems using causal graphs [See Appendix 5.2 for justification]. The questions we pose are:
Given a target relation Q to be estimated and a set of assumptions about the missingness process
encoded in a graphical model, under what conditions does a consistent estimate exist and how can
we elicit it from the data available?

We answer these questions with the aid of Missingness Graphs (m-graphs in short) to be described
in Section 2. Furthermore, we review the traditional taxonomy of missing data problems and cast it
in graphical terms. In Section 3 we define the notion of recoverability - the existence of a consistent
estimate - and present graphical conditions for detecting recoverability of a given probabilistic query
Q. Conclusions are drawn in Section 4.

2 Graphical Representation of the Missingness Process

2.1 Missingness Graphs
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Figure 1: m-graphs for data that are: (a) MCAR, (b) MAR, (c) & (d) MNAR; Hollow and solid
circles denote partially and fully observed variables respectively.

Graphical models such as DAGs (Directed Acyclic Graphs) can be used for encoding as well as
portraying conditional independencies and causal relations, and the graphical criterion called d-
separation (refer Appendix-5.1, Definition-3) can be used to read them off the graph [21, 20]. Graph-
ical Models have been used to analyze missing information in the form of missing cases (due to
sample selection bias)[4]. Using causal graphs, [8]- analyzes missingness due to attrition (partially
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MAR [Missing at random]

• Whether or not a value is missing 
here depends on the value of 
other (observed) features
• Techniques like MICE which build 

predictive models of features for 
imputation will work well here
• Example: Childhood data 

handled by different hospital 
team than adult data which 
could affect missingness pattern

deletion (or “available case”) is a deletion method used for estimating pairwise relations among vari-
ables. For example, to compute the covariance of variables X and Y , all those cases or observations
in which both X and Y are observed are used, regardless of whether other variables in the dataset
have missing values.

The expectation-maximization (EM) algorithm is a general technique for finding maximum like-
lihood (ML) estimates from incomplete data. It has been proven that likelihood-based inference
while ignoring the missing data mechanism, leads to unbiased estimates under the assumption of
missing at random (MAR) [13]. Most work in machine learning assumes MAR and proceeds with
ML or Bayesian inference. Exceptions are recent works on collaborative filtering and recommender
systems which develop probabilistic models that explicitly incorporate missing data mechanism
[16, 14, 15]. ML is often used in conjunction with imputation methods, which in layman terms,
substitutes a reasonable guess for each missing value [1]. A simple example is Mean Substitution, in
which all missing observations of variable X are substituted with the mean of all observed values of
X . Hot-deck imputation, cold-deck imputation [17] and Multiple Imputation [26, 27] are examples
of popular imputation procedures. Although these techniques work well in practice, performance
guarantees (eg: convergence and unbiasedness) are based primarily on simulation experiments.

Missing data discussed so far is a special case of coarse data, namely data that contains observations
made in the power set rather than the sample space of variables of interest [12]. The notion of coars-
ening at random (CAR) was introduced in [12] and identifies the condition under which coarsening
mechanism can be ignored while drawing inferences on the distribution of variables of interest [10].
The notion of sequential CAR has been discussed in [9]. For a detailed discussion on coarsened data
refer to [30].

Missing data literature leaves many unanswered questions with regard to theoretical guarantees for
the resulting estimates, the nature of the assumptions that must be made prior to employing various
procedures and whether the assumptions are testable. For a gentle introduction to the missing data
problem and the issue of testability refer to [22, 19]. This paper aims to illuminate missing data
problems using causal graphs [See Appendix 5.2 for justification]. The questions we pose are:
Given a target relation Q to be estimated and a set of assumptions about the missingness process
encoded in a graphical model, under what conditions does a consistent estimate exist and how can
we elicit it from the data available?

We answer these questions with the aid of Missingness Graphs (m-graphs in short) to be described
in Section 2. Furthermore, we review the traditional taxonomy of missing data problems and cast it
in graphical terms. In Section 3 we define the notion of recoverability - the existence of a consistent
estimate - and present graphical conditions for detecting recoverability of a given probabilistic query
Q. Conclusions are drawn in Section 4.

2 Graphical Representation of the Missingness Process

2.1 Missingness Graphs
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Figure 1: m-graphs for data that are: (a) MCAR, (b) MAR, (c) & (d) MNAR; Hollow and solid
circles denote partially and fully observed variables respectively.

Graphical models such as DAGs (Directed Acyclic Graphs) can be used for encoding as well as
portraying conditional independencies and causal relations, and the graphical criterion called d-
separation (refer Appendix-5.1, Definition-3) can be used to read them off the graph [21, 20]. Graph-
ical Models have been used to analyze missing information in the form of missing cases (due to
sample selection bias)[4]. Using causal graphs, [8]- analyzes missingness due to attrition (partially
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MNAR (Missing not at random) 

• Whether or not a feature is 
missing depends on the value the 
feature takes.
• Often not possible to answer 

probabilistic queries without
assumptions/domain knowledge
• Example: The patient’s blood

pressure is not recorded if it is 
above 127 

deletion (or “available case”) is a deletion method used for estimating pairwise relations among vari-
ables. For example, to compute the covariance of variables X and Y , all those cases or observations
in which both X and Y are observed are used, regardless of whether other variables in the dataset
have missing values.

The expectation-maximization (EM) algorithm is a general technique for finding maximum like-
lihood (ML) estimates from incomplete data. It has been proven that likelihood-based inference
while ignoring the missing data mechanism, leads to unbiased estimates under the assumption of
missing at random (MAR) [13]. Most work in machine learning assumes MAR and proceeds with
ML or Bayesian inference. Exceptions are recent works on collaborative filtering and recommender
systems which develop probabilistic models that explicitly incorporate missing data mechanism
[16, 14, 15]. ML is often used in conjunction with imputation methods, which in layman terms,
substitutes a reasonable guess for each missing value [1]. A simple example is Mean Substitution, in
which all missing observations of variable X are substituted with the mean of all observed values of
X . Hot-deck imputation, cold-deck imputation [17] and Multiple Imputation [26, 27] are examples
of popular imputation procedures. Although these techniques work well in practice, performance
guarantees (eg: convergence and unbiasedness) are based primarily on simulation experiments.

Missing data discussed so far is a special case of coarse data, namely data that contains observations
made in the power set rather than the sample space of variables of interest [12]. The notion of coars-
ening at random (CAR) was introduced in [12] and identifies the condition under which coarsening
mechanism can be ignored while drawing inferences on the distribution of variables of interest [10].
The notion of sequential CAR has been discussed in [9]. For a detailed discussion on coarsened data
refer to [30].

Missing data literature leaves many unanswered questions with regard to theoretical guarantees for
the resulting estimates, the nature of the assumptions that must be made prior to employing various
procedures and whether the assumptions are testable. For a gentle introduction to the missing data
problem and the issue of testability refer to [22, 19]. This paper aims to illuminate missing data
problems using causal graphs [See Appendix 5.2 for justification]. The questions we pose are:
Given a target relation Q to be estimated and a set of assumptions about the missingness process
encoded in a graphical model, under what conditions does a consistent estimate exist and how can
we elicit it from the data available?

We answer these questions with the aid of Missingness Graphs (m-graphs in short) to be described
in Section 2. Furthermore, we review the traditional taxonomy of missing data problems and cast it
in graphical terms. In Section 3 we define the notion of recoverability - the existence of a consistent
estimate - and present graphical conditions for detecting recoverability of a given probabilistic query
Q. Conclusions are drawn in Section 4.

2 Graphical Representation of the Missingness Process

2.1 Missingness Graphs
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Figure 1: m-graphs for data that are: (a) MCAR, (b) MAR, (c) & (d) MNAR; Hollow and solid
circles denote partially and fully observed variables respectively.

Graphical models such as DAGs (Directed Acyclic Graphs) can be used for encoding as well as
portraying conditional independencies and causal relations, and the graphical criterion called d-
separation (refer Appendix-5.1, Definition-3) can be used to read them off the graph [21, 20]. Graph-
ical Models have been used to analyze missing information in the form of missing cases (due to
sample selection bias)[4]. Using causal graphs, [8]- analyzes missingness due to attrition (partially

2



Missingness in 
tabular data

• Impute missing data with 
zero 
• Impute missing data with 

mean of observed data in 
that column
• Impute missing data using 

prior knowledge
• Use ideas from machine 

learning to impute 
missing data



Multiple Imputation with Chained Equations 
(MIC)

• MICE [van Buuren et. al, JSS 2011]
• Also known as sequential regression multiple imputation 
• Extension to multiple imputation [Rubin, 1987]

• Algorithm: 
• Learn a parametric model of each feature given all the others
• Impute the missing data
• Retraining models
• Repeat

• Found to work well in practice with many open source
packages

6 mice: Multivariate Imputation by Chained Equations in R

correct as in Rubin (1987, Chapter 4) for a wide range in Q. Typical problems that may
surface while imputing multivariate missing data are

For a given Yj , predictors Y�j used in the imputation model may themselves be incom-
plete.

Circular dependence can occur, where Y1 depends on Y2 and Y2 depends on Y1 because
in general Y1 and Y2 are correlated, even given other variables.

Especially with large p and small n, collinearity and empty cells may occur.

Rows or columns can be ordered, e.g., as with longitudinal data.

Variables can be of di↵erent types (e.g., binary, unordered, ordered, continuous), thereby
making the application of theoretically convenient models, such as the multivariate
normal, theoretically inappropriate.

The relation between Yj and Y�j could be complex, e.g., nonlinear, or subject to cen-
soring processes.

Imputation can create impossible combinations (e.g., pregnant fathers), or destroy de-
terministic relations in the data (e.g., sum scores).

Imputations can be nonsensical (e.g., body temperature of the dead).

Models for Q that will be applied to the imputed data may not (yet) be known.

This list is by no means exhaustive, and other complexities may appear for particular data.

In order to address the issues posed by the real-life complexities of the data, it is convenient
to specify the imputation model separately for each column in the data. This has led by to
the development of the technique of chained equations. Specification occurs on at a level that
is well understood by the user, i.e., at the variable level. Moreover, techniques for creating
univariate imputations have been well developed.

Let the hypothetically complete data Y be a partially observed random sample from the p-
variate multivariate distribution P (Y |✓). We assume that the multivariate distribution of Y
is completely specified by ✓, a vector of unknown parameters. The problem is how to get the
multivariate distribution of ✓, either explicitly or implicitly. The MICE algorithm obtains the
posterior distribution of ✓ by sampling iteratively from conditional distributions of the form

P (Y1|Y�1, ✓1)
...

P (Yp|Y�p, ✓p).

The parameters ✓1, . . . , ✓p are specific to the respective conditional densities and are not
necessarily the product of a factorization of the ‘true’ joint distribution P (Y |✓). Starting from
a simple draw from observed marginal distributions, the tth iteration of chained equations is
a Gibbs sampler that successively draws

✓⇤(t)1 ⇠ P (✓1|Y obs
1 , Y (t�1)

2 , . . . , Y (t�1)
p )



Missingness in longitudinal data

• More challenging to impute missingness in longitudinal data since 
imputations have to be consistent with observed dynamics
• Zero imputation – generally not a good idea
• Forward-fill imputation 
• Carry forward the previous value

• Model-based imputation



Model-based handling of missingness in 
longitudinal data

[supervised learning]
• Use forward fill imputation and append missingness vectors into the 

model
• Example – RNNs for multivariate time-series with missing data



Model-based handling of missingness in 
longitudinal data

[unsupervised learning]
• Learn a statistical model of the observed data and use it to impute the 

unobserved values
• Maximum likelihood estimation for state space models is feasible even when 

data is missing 



Questions?


