

Topics in Machine Learning Machine Learning for Healthcare

Rahul G. Krishnan
Assistant Professor
Computer science & Laboratory Medicine and Pathobiology

Slide credits to David Sontag & Uri Shalit

Outline – A taste of causal inference

- Recap: Randomized control trials
- Making decisions with predictive models
- Potential outcomes
- Do operator
- Assumptions in causal inference
- Algorithms for estimating ATE and CATE

Last week

Treatment

Control

$$ATE = \sum_{i \in \mathcal{T}} y_t - \sum_{i \in \mathcal{C}} y_c \cong \mathbb{E}[Y_t - Y_c]$$

Y is an outcome of interest (positive value good; negative value bad)

Risk stratification

- We studied how supervised machine learning could be used for the early detection of diabetes
- There were several features that were associated with an increased/decreased risk of diabetic onset
- Gastric bypass was the highest-negative weight
 - Is this a good idea for an intervention?

Survival analysis

- We can use survival models to predict time of dying/progression of disease in the future
- Trained a CoxPH model and feature associated with high creatinine increased survival time
 - Should we conclude that increasing creatinine improved survival?

Challenges in making decisions from healthcare data

- Doing an RCT is not always ethical
 - e.g. cannot force a control group to smoke to assess its effects on long-cancer
- Can we make causal conclusions from retrospective data?
- Key challenges:
 - Unobserved confounding
 - Positive support

What should the graph of observational health data look like?

A simple causal graph for observational data

Doctor might prescribe Metformin if A1C level is high

Covariates X Treatment

Outcome

Patient could have a high BMI making them more likely to suffer from heart failure. Metformin has an effect on an outcome like death

Causal inference with the Potential Outcomes framework

- Each individual x_i has two potential outcomes:
 - ullet Control outcome [PO had the individual not been treated] $\ Y_0(x_i)$
 - Treated outcome [PO had the individual been treated] $Y_1(x_i)$
- Conditional average treatment effect [CATE]

$$CATE(x_i) = \mathbb{E}_{Y_1 \sim p(Y_1|x_i)}[Y_1|x_i] - \mathbb{E}_{Y_0 \sim p(Y_0|x_i)}[Y_0|x_i]$$

Average treatment effect [ATE]

$$ATE = \mathbb{E}[Y_1 - Y_0] = \mathbb{E}_{x \sim p(x)}[CATE(x)]$$

Visualizing notation on potential outcomes Example – Blood pressure and age

Slide credit: David Sontag

(age, gender,	Y ₀ : Sugar levels	Y ₁ : Sugar levels	Observed
exercise)	had they	had they	sugar levels
	received	received	
	medication A	medication B	
(45, F, 0)	6	5.5	6
(45, F, 1)	7	6.5	6.5
(55, M, 0)	7	6	7
(55, M, 1)	9	8	8
(65, F, 0)	8.5	8	8
(65,F, 1)	7.5	7	7.5
(75,M, 0)	10	9	9
(75,M, 1)	8	7	8

(Example from Uri Shalit)

For an individual we only observe one of the potential outcomes

- Fundamental problem of causal inference (Rubin 1974; Holland 1986)
- HowWhen can we make causal conclusions despite this?

The do-operator

- The do-operator (Pearl, 2000) is a graphical operator on a causal graph that characterizes the effect of an intervention
- It allows us to mimic the effect of an intervention onto variation in the joint probability distribution

Causal inference

- What we have: Data is drawn from the joint distribution on the left
- What we want: Samples from the joint distributions on the right
- Key idea: Under certain assumptions, we can estimate conditional distributions from the right
- **Strategy:** Write down the causal estimand using quantities estimable from the observed (left) distribution)

Assumptions in causal inference -(1)

 Y_0, Y_1 : potential outcomes for control and treated

x: unit covariates (features)

T: treatment assignment

We assume:

$$(Y_0, Y_1) \perp T \mid x$$

Also known as Ignorability

The potential outcomes are independent of treatment assignment, conditioned on covariates x

Ignorability

$$(Y_0, Y_1) \perp \!\!\!\perp T \mid x$$

No Ignorability

$$(Y_0, Y_1) \not\perp \!\!\!\perp T \mid x$$

Assumptions in causal inference -(2)

 Y_0, Y_1 : potential outcomes for control and treated

x: unit covariates (features)

T: treatment assignment

We assume:

$$p(T = t | X = x) > 0 \ \forall t, x$$

Also known as Common Support

Before beginning any causal analysis

- Understand where the data is coming from (are there biases you didn't account for)
- Drawing the causal graph (or even approximations to it) can be a crucial exercise
- What should X, T, Y be? Do they satisfy ignorability and positivity?
- What is the causal query of interest?

Adjustment formula (Hernan and Robins, 2010) (Pearl, 2009)

 Also known as the G-formula, it provides a mechanism to write down a causal estimand using observational data

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$\mathbb{E}\left[Y_1\right] = \begin{array}{c} \operatorname{law \ of \ total} \\ \operatorname{expectation} \end{array}$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x \right] \right] =$$

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$\begin{split} \mathbb{E}\left[Y_{1}\right] &= & \text{ignorability} \\ \mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{Y_{1} \sim p(Y_{1}|x)}\left[Y_{1}|x\right]\right] &= & (Y_{0}, Y_{1}) \perp\!\!\!\perp T \mid x \\ \mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{Y_{1} \sim p(Y_{1}|x)}\left[Y_{1}|x, T = 1\right]\right] &= \end{split}$$

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$\mathbb{E}\left[Y_1\right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x \right] \right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x, T = 1 \right] \right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$$
 shorter notation

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$\mathbb{E}\left[Y_0\right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_0 \sim p(Y_0|x)} \left[Y_0 | x \right] \right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_0 \sim p(Y_0|x)} \left[Y_0 | x, T = 1 \right] \right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E} \left[Y_0 | x, T = 0 \right] \right]$$

The adjustment formula

Under the assumption of ignorability, we have that:

$$ATE = \mathbb{E}\left[Y_1 - Y_0\right] =$$

$$\mathbb{E}_{x \sim p(x)}\left[\mathbb{E}\left[Y_1 | x, T = 1\right] - \mathbb{E}\left[Y_0 | x, T = 0\right]\right]$$

$$\mathbb{E}\left[Y_1|x,T=1
ight] egin{array}{c} ext{Quantities we} \ ext{can estimate} \ ext{from data} \end{array}$$

The adjustment formula

Under the assumption of ignorability, we have that:

$$ATE = \mathbb{E}\left[Y_1 - Y_0\right] =$$

$$\mathbb{E}_{x \sim p(x)}\left[\mathbb{E}\left[Y_1 | x, T = 1\right] - \mathbb{E}\left[Y_0 | x, T = 0\right]\right]$$

$$\mathbb{E}\left[Y_0|x,T=1\right]$$
 $\mathbb{E}\left[Y_1|x,T=0\right]$
 $\mathbb{E}\left[Y_0|x\right]$
 $\mathbb{E}\left[Y_1|x\right]$

Quantities we cannot directly estimate from data

The adjustment formula

Under the assumption of ignorability, we have that:

$$ATE = \mathbb{E}\left[Y_1 - Y_0\right] =$$

$$\mathbb{E}_{x \sim p(x)}\left[\begin{array}{c} \mathbb{E}\left[Y_1|x, T = 1\right] - \mathbb{E}\left[Y_0|x, T = 0\right] \end{array}\right]$$

$$\mathbb{E}\left[Y_1|x, T = 1\right]$$

$$\mathbb{E}\left[Y_0|x, T = 0\right]$$
Quantities we can estimate from data

Empirically we have samples from p(x|T=1) or p(x|T=0). Extrapolate to p(x)

Strategies for Adjustment

- CovariateAdjustment
 - Response surface modeling
 - Use a parametric model of treatments, confounders and outcome

Covariate adjustment (parametric g-formula)

- Explicitly model the relationship between treatment, confounders, and outcome
- Under ignorability, the expected causal effect of T on Y:

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \right]$$

• Fit a model $f(x,t) \approx \mathbb{E}[Y_t | T = t, x]$

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} f(x_i, 1) - f(x_i, 0)$$

Covariate adjustment (parametric g-formula)

- Explicitly model the relationship between treatment, confounders, and outcome
- Under ignorability, the expected causal effect of *T* on *Y*:

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \right]$$

• Fit a model $f(x,t) \approx \mathbb{E}[Y_t | T = t, x]$

$$\widehat{CATE}(x_i) = f(x_i, 1) - f(x_i, 0)$$

Covariate adjustment with linear models

Assume that:

Blood pressure age medication
$$Y_t(x) = \beta x + \gamma \cdot t + \epsilon_t$$

$$\mathbb{E}[\epsilon_t] = 0$$

$$ATE := \mathbb{E}_{p(x)}[CATE(x)] = \gamma$$

- For causal inference, need to estimate γ well, not $Y_t(x)$ **Identification**, not prediction
- Major difference between ML and statistics

What happens if true model is not linear?

• True data generating process, $x \in \mathbb{R}$:

$$Y_t(x) = \beta x + \gamma \cdot t + \delta \cdot x^2$$

$$ATE = \mathbb{E}[Y_1 - Y_0] = \gamma$$

Hypothesized model:

$$\widehat{Y}_t(x) = \widehat{\beta}x + \widehat{\gamma} \cdot t$$

$$\hat{\gamma} = \gamma + \delta \frac{\mathbb{E}[xt]\mathbb{E}[x^2] - \mathbb{E}[t^2]\mathbb{E}[x^2t]}{\mathbb{E}[xt]^2 - \mathbb{E}[x^2]\mathbb{E}[t^2]}$$

Depending on δ , can be made to be arbitrarily large or small!

Covariate adjustment with non-linear models

- Random forests and Bayesian trees
 Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)
- Gaussian processes
 Hoyer et al. (2009), Zigler et al. (2012)
- Neural networks

 Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016),
 Lopez-Paz et al. (2016)

Covariate adjustment with non-linear models

- Random forests and Bayesian trees
 Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)
- Gaussian processes
 Hoyer et al. (2009), Zigler et al. (2012)
- Neural networks

 Beck et al. (2000), Johansson et al. (2016), Shalit et al. (2016),
 Lopez-Paz et al. (2016)

Alternative strategies for adjustment - Matching

Summary

- Two strategies where machine learning may be used for causal inference:
 - Predict outcome given features and impute counterfactuals [covariate adjustment]
 - Predict treatment using features (propensity scores) and use to reweigh the outcome

Causal inference is a big field

- Causal inference has been studied in many communities of science including economics, statistics, machine learning
- Different schools of thought causal graphs vs conditional independence statements
- Beyond the scope to have an in-depth discussion of the all techniques underlying this field in this class
- Lots of research in leveraging ideas from causal inference to improve predictive models